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Problem 1. In order to sketch the tetrahedron E, consider the case when x = 0, y = 0, and z = 0. If x = 0,
then you have the line y + z = 1 on the yz-plane. Similarly, If y = 0, then you have the line x+ z = 1 on the
xz-plane. Lastly, when z = 0, you have x+ y = 1 in the xy-plane which results in the following graph.
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We first set up the first two integral which will describe the region R formed by projecting the tetrahedron
E down to the xy-plane. Then the region R
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is bounded by x = 0, y = 0, and x+ y = 1, so the first two integral will be∫∫∫
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To figure out the third integral, note that the top function is given by x+ y + z = 1⇒ z = 1− x− y and the
bottom function is given by z = 0, hence the integral is∫ 1
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Problem 2. The solid region E can be sketched as follows

Then the region R is formed by projecting E onto the xy-plane. This is exactly the intersection between
the cone and the sphere. Namely, substituting z2 = x2 + y2 into the equation of the spehere, we obtain
x2 + y2 +(x2 + y2) = 4⇒ x2 + y2 = 2. Hence R is enclosed by the circle of radius

√
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Using the sphere as the top function and cone as the bottom function, we get∫∫∫
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(a) In cylindrical coordiante, we get∫ 2π
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using r2 = x2 + y2.

(b) To figure out the range for φ, we use the equation of the cone. This says that

ρ2 cos2 φ = ρ2 sin2 φ⇒ cos2 φ = sin2 φ

Since z > 0 in E and 0 ≤ φ ≤ π, the only solution is φ = π
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In order to see this, the θ-cross section is all of the same shape

As φ ranges from 0 to π
4 , ρ is always from 0 to 2.



Problem 3. Since we use r as a variable, we use R for the radius of the cylinder. Then the volume of a
cylinder is given by the following iterated integral∫ 2π
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Recall here that sin(2φ) = 2 sinφ cosφ, so sinφ cosφ = 1
2 sin(2φ). Then∫
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