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Problem 1. Note that the bound is given by

{(x, y) | 1 ≤ xy ≤ 3 and 2 ≤ y ≤ 6}

If we set u = xy and v = y, then the region R becomes

{(u, v) | 1 ≤ u ≤ 3 and 2 ≤ v ≤ 6}

a rectangular region. We have u = xy = xv, so
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Problem 2.

(a) We keep the variables x, y. Then 6x+ y+3z = 9 ⇒ 3z = 9− 6x− y ⇒ z = 1
3 (9− 6x− y). Therefore,

a vector parametrization is

r(x, y) = xı̂+ yȷ̂+
1

3
(9− 6x− y)k̂

and we need to figure out the ranges of the parameters. Since being in first octant means that x, y, z
are all ≥ 0, we first figure out the range of x. Since y, z ≥ 0, we have

6x ≤ 6x+ y + 3z = 9 ⇒ x ≤ 3

2

On the other hand, the range of y depends on x.

0 ≤ z =
1

3
(9− 6x− y) ⇒ 0 ≤ 9− 6x− y ⇒ y ≤ 9− 6x

Therefore, the ranges are given by

0 ≤ x ≤ 3

2
and 0 ≤ y ≤ 9− 6x



(b) For circular paraboloid, it is better to use the cylindrical coordinate. Hence we are going to use r, θ for
the vector parametrization. Observe that the intersection of the circular paraboloid and the cylinder
is z = x2+y2 = 9. Hence the part of the circular paraboloid inside the cylinder is given by 0 ≤ z ≤ 9.
As z = x2 + y2 = r2, we obtain the inequality 0 ≤ r ≤ 3. Therefore, a vector parametrization is

s(r, θ) = r cos θı̂+ r sin θȷ̂+ r2k̂

with 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 3.

Problem 3.

(a) Here dummy variable change means∫ ∞
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By setting y = x. Then we have(∫ ∞
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Here we have repeatedly used the constant rule C(y)
∫
f(x) dx =

∫
C(y)f(x) dx where C(y) is a

function of y because in terms of x, C(y) is a constant.

(b) The bound 0 ≤ x and 0 ≤ y in polar coordinate is given by

0 ≤ r and 0 ≤ θ ≤ π
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Then we have ∫ ∞
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In particular, (∫ ∞
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