MATH 241 Calculus III Spring 2023 Groupwork 9: Sections 15.1-15.2

You should work on and discuss this worksheet with members of your group. Your TA will assist as needed. Turn in your solutions either on this sheet or a separate sheet of paper. Be sure to include your name!

- 1. (Conceptual Check) Match the vector field **F** with the correct plot.
 - (a) F(x, y) = (x, -y)
 - (b) F(x, y) = (y, x y)
 - (c) F(x,y) = (y, y+2)
 - (d) $F(x, y) = (\cos(x + y), x)$

- 2. Which of the following quantities are vector-valued, which are scalar-valued, and which are undefined? (No computation needed.)
 - (a) $\nabla(fg)$
 - (b) $\operatorname{curl}(\nabla f)$
 - (c) $\nabla(\operatorname{div} \mathbf{F})$
 - (d) $\operatorname{curl}(\operatorname{curl} \mathbf{F})$
 - (e) $\operatorname{div}(\nabla f)$
 - (f) $\operatorname{curl}(\operatorname{div} F)$
 - (g) $\operatorname{div}(\operatorname{div} \mathbf{F})$
- 3. Find the curl of $\mathbf{F}(x, y, z) = (3 + 2xy)\hat{\mathbf{i}} + (x^2 3y^2)\hat{\mathbf{j}}$. Is this vector field conservative? If it is, find a function f such that $\mathbf{F} = \nabla f$. Otherwise explain why it is not conservative.
- 4. A thin wire bent in the shape of a curve *C* has mass density $\rho(x, y) = 2x + 1$ where *C* consists of the arc C_1 of the parabola $y = x^2$ from (0,0) to (1,1), followed by the vertical line segment C_2 from (1,1) to (1,2). First draw a picture of the curve *C*. Then find $\int_C \rho(x, y) \, ds$, the total mass of the wire.
- 5. Find the work done by the force field $\mathbf{F}(x, y) = (x^2, -xy)$ on a particle moving along the quarter circle in the first quadrant with radius 2, starting from the point (2,0) (i.e. compute the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$). Also find the work done if the particle travels along the entire circle (i.e. starting and ending at the point (2,0)).
- 6. (Extra Conceptual Check) Consider Figures I and II from Problem 1 again. For both, do you expect div $\mathbf{F}(-2, 2)$ to be positive, negative, or zero? Also do you expect curl $\mathbf{F}(-2, 2)$ to point in the direction $\hat{\mathbf{k}}$, in the direction $-\hat{\mathbf{k}}$, or be equal to 0? If you have time, verify your guesses by computing the divergence and curl at (-2, 2) for each of the vector fields in Figures I and II.