Groupwork 10 Solution
MATH 241 (Spring 2023)
04/25/2023

Problem 1. The area R bounded by the circle 2% + 3? = 4 is given by
R={(r,0)|0<r<2and0<6 <27}
Then by Green’s Theorem we have
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Problem 3. We solve (a) and (b) together. We show that F' is conservative. In other words, there exists a
potential function f of F such that F = grad f. If such f exists, f, = 22y and f, = 2. Then
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Hence f, = 2? + h/(y), so we have z? = 22 + h/(y) = I/(y) = 0. Therefore, y is a constant. Since we can
choose any constant, we set the constant to be 0. So f = zy. This shows that F' is conservative.



Then by the fundamental theorem of line integral
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which is same for all curves C' that have the same starting point (1, 2) and end point (3, 2).

Problem 4. We use polar coordinates, i.e. let x = rcosf and y = rsinf. Then z = /22 +y2 = V12 = r.

Then a parametrization of the thin cone is
s(r,0) = (rcos@,rsinf,r)
for 1 <r <4and0 < 6 < 2. For later use, we compute ||s, X sg]|.
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Then the total mass is
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Therefore the total mass is
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