Problem 1. All functions in the derivative are continuous, so we only check that second condition that $r'(t) \neq 0$.

(a) The derivative is

$$\mathbf{r}'(t) = (2t, 18t^5, 0)$$

Then $\mathbf{r}'(0) = 0$, so \mathbf{r} is not smooth.

(b) The derivative is

$$r'(t) = (\sin t, 0, \cos t)$$

There is no single t such that $\sin t = \cos t = 0$. This is because $\sin t = 0$ if and only if $t = \frac{k\pi}{2}$ for k even integer, and $\cos t = 0$ if and only if $t = \frac{k\pi}{2}$ for k odd integer. There is no integer that is both odd and even. This shows that $r'(t) \neq 0$ for any t. Hence r is smooth.

(c) The derivative is

$$r'(t) = (10t, 3t^2, \frac{1}{t})$$

Notice that $\frac{1}{t}$ is never zero and not defined at t = 0. Therefore, $\mathbf{r}'(t) \neq \mathbf{0}$ for all t > 0 and \mathbf{r} is smooth.

Problem 2.

(a) The line parallel to the line is (-8, 10, 7) - (2, 4, -3) = (-10, 6, 10). Then the parametrization is given by

$$\mathbf{r}(t) = (-10t+2)\mathbf{\hat{i}} + (6t+4)\mathbf{\hat{j}} + (10t-3)\mathbf{\hat{k}}$$

for $0 \le t \le 1$.

(b) We first figure out the radius of the semicircle. We have

$$\left\| \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \right\| = \left\| \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right) \right\| = 1$$

Therefore, the semi-circle has a raidus of 1. We now solve

$$\cos t = \frac{\sqrt{2}}{2}$$
 & $\sin t = \frac{\sqrt{2}}{2}$ and $\cos t = -\frac{\sqrt{2}}{2}$ & $\sin t = -\frac{\sqrt{2}}{2}$

Then we have $t = \frac{\pi}{4}$ and $t = \frac{5\pi}{4}$. The parametrization is

$$\mathbf{r}(t) = \cos t \,\hat{\boldsymbol{\imath}} + \sin t \,\hat{\boldsymbol{\jmath}}$$

for $\frac{\pi}{4} \leq t \leq \frac{5\pi}{4}$ because it passes through the second quadrant.

Problem 3. The derivative is

$$r'(t) = (2\cos t, -2\sin t, 0)$$

Hence the arc length

$$\int_0^\pi ||\mathbf{r}'(t)|| \, dt = \int_0^\pi \sqrt{4\cos^2 t + 4\sin^2 t} \, dt = \int_0^\pi 2 \, dt = 2\pi$$