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Problem 1.
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Then

∂w

∂s
= (y sin(z2)) · 1 + (x sin(z2)) · (2s)
= s2 sin(t4) + 2s(s− t) sin(t4)

Problem 2. Taking partial x on both sides, we get
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Product rule says that
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Hence we get
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After expanding out and reordering we obtain

1− yz sin(xyz) = (y + xy sin(xyz))
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Hence one has
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=
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Problem 3. Chain rule says
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Notice here that we used d for dw/dt since z can be considered as a single-variable function of t. But we
used ∂ for w as a function of x and y because there are two variables. Then dx

dt = x′(t) and dy
dt = y′(t). Hence

dw

dt
= cos(y(t)2) · x′(t)− 2x(t)y(t) sin(y(t)2) · y′(t)

Problem 4. If we take partial with respect to x of F (x, y, z(x, y)) = 0, we get
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Then we get

Fz(x, y, z)
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= −Fx(x, y, z) ⇒
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= −Fx(x, y, z)

Fz(x, y, z)

Problem 5. Let u = tx and v = ty. Then
d

dt
f(u, v) =
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+
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= fux+ fvy

d

dt
tnf(x, y) = ntn−1f(x, y)

If t = 1, then u = x and v = y. Hence we obtain

xfx(x, y) + yfy(x, y) = nf(x, y)


