Problem 1. Let

$$w = xy\sin(z^2), x = s - t, y = s^2, z = t^2$$

Find $\frac{\partial w}{\partial s}$ by using chain rule.

Problem 2. Let z be implicitly defined function of x and y by the equation

$$x - yz + \cos(xyz) = 2$$

Find $\frac{\partial z}{\partial x}$.

Problem 3. Let $w = x \cos(y^2)$, $x = \sin t$, and $y = t^2$. Find $\frac{dw}{dt}$ in terms of x(t), y(t), x'(t) and y'(t).

Problem 4. (Challenge) Let *F* be a differentiable function of *x*, *y*, and *z*. Suppose z = z(x, y) is a function of *x*, *y* such that F(x, y, z(x, y)) = 0. Prove using the chain rule that

$$\frac{\partial z(x,y)}{\partial x} = \frac{-F_x(x,y,z)}{F_z(x,y,z)}$$

Problem 5. (Challenge) Let *f* be a function such that

$$f(tx, ty) = t^n f(x, y)$$

for all real number t. Show that

 $xf_x(x,y) + yf_y(x,y) = nf(x,y)$

Hint for Problem 4: Take $\frac{\partial}{\partial x}$ on the equation F(x, y, z) = 0. **Hint for Problem 5:** Let u = tx and v = ty and differentiate both side with respect to t. Set t = 1.