Thursday Practice 9 Name:

MATH 241 (Spring 2023) Section: 0112 (8AM-9AM) / 0122 (9:30AM-10:20AM)
04/27/2023 TA: Shin Eui Song

Problem 1. Compute the following line integral

1
f/ —ydr+xdy
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where C is an ellipse given by % +y? = 1. (Hint: It is easier to directly compute the line integral.)

Problem 2. Compute the following line integral

/(5x2+4)dx+xdy
C

where C is a circle of raidus 3.



Problem 3. Evaluate

J[aas

where ¥ is the part of the plane 2z + 3y 4+ z = 6 in the first octant.

Problem 4. Show that the line integral
/ (cosz + 2yz) dz + (siny + 2zz) dy + (z + 2zy) dz
c

is independent of path, and evaluate the integral when C' is parametrized by r(t) = (¢,t,7—2t) for 0 < ¢ < 7.
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Problem 1. Let r(t) = (2cost,sint) be a parametrization of the ellipse for 0 < ¢ < 2x. Then r(t) =
(—2sint, cost). Plugging into the line integral, we obtain
2m
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Problem 2. We have P = 522 + 4 and Q = z, so

/(5x2—|—4)da:+xdy=//1dA
c R

Then one immediately knows that the area of the circle of radius 3 is 97. Or, we change to polar coordinate

to obtain
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Problem 3. We use the parametrization r(z,y) = (z,y,6 — 2z — 3y). Then the region R in the zy-plane is
given by
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We have
ry =(1,0,-2) and r, = (0,1, —3)
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Hence the integral becomes
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We have that
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Problem 4. If the vector field is conservative, there exists an f such that

fz =cosx+2yzand f, =siny+ 22z and f, = 2z + 22y

Then
f= /fm dx = sinz + 2zyz + g(y, 2)
Then
0
fy =2xz + a—z =siny + 2xz
Hence 29 = siny = g = — cos y+h(z). Therefore, f = sinz+ 2zyz—cos y+h(z). Again taking the derivative

dy
in terms of z, we get f, = 22y + h'(2) = 2+ 22y = W (2) = 2 = h(z) = é + C. Since we can choose any
constant, let C' = 0. Thus, we have obtained a potential function
2
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f =sinx + 2zxyz — cosy + 5



Note that the starting point of r is (0,0,0) and the ending point is (, 7, -). Then we have that the integral
is equal to
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