Thursday Practice 9	Name:	
MATH 241 (Spring 2023)	Section:	0112 (8AM-9AM) / 0122 (9:30AM-10:20AM)
04/27/2023	TA:	Shin Eui Song

Problem 1. Compute the following line integral

$$\frac{1}{2}\int_C -y\;dx+x\;dy$$

where C is an ellipse given by $\frac{x^2}{4} + y^2 = 1$. (Hint: It is easier to directly compute the line integral.)

Problem 2. Compute the following line integral

$$\int_C (5x^2 + 4) \, dx + x \, dy$$

where C is a circle of raidus 3.

Problem 3. Evaluate

where Σ is the part of the plane 2x + 3y + z = 6 in the first octant.

Problem 4. Show that the line integral

 $\int_{C} (\cos x + 2yz) \, dx + (\sin y + 2xz) \, dy + (z + 2xy) \, dz$

is independent of path, and evaluate the integral when C is parametrized by $\mathbf{r}(t) = (t, t, \pi^{-2}t)$ for $0 \le t \le \pi$.

Problem 1. Let $\mathbf{r}(t) = (2\cos t, \sin t)$ be a parametrization of the ellipse for $0 \le t \le 2\pi$. Then $\mathbf{r}(t) = (-2\sin t, \cos t)$. Plugging into the line integral, we obtain

$$\frac{1}{2}\int_0^{2\pi} (-\sin t)(-2\sin t) + (2\cos t)(\cos t) = \frac{1}{2}\int_0^{2\pi} 2\ dt = \boxed{2\pi}$$

Problem 2. We have $P = 5x^2 + 4$ and Q = x, so

$$\int_{C} (5x^{2} + 4) \, dx + x \, dy = \iint_{R} 1 \, dA$$

Then one immediately knows that the area of the circle of radius 3 is 9π . Or, we change to polar coordinate to obtain

$$\int_{0}^{2\pi} \int_{0}^{3} r \, dr \, d\theta = \int_{0}^{2\pi} \left. \frac{r}{2} \right|_{0}^{3} \, d\theta = \int_{0}^{2\pi} \frac{9}{2} \, d\theta = \boxed{9\pi}$$

Problem 3. We use the parametrization r(x, y) = (x, y, 6 - 2x - 3y). Then the region R in the xy-plane is given by

$$\left\{ (x,y) \; \middle| \; 0 \le x \le 3 \text{ and } 0 \le y \le 2 - \frac{2}{3}x \right\}$$

We have

$$r_x = (1, 0, -2)$$
 and $r_y = (0, 1, -3)$

so

As

$$||\boldsymbol{r}_x \times \boldsymbol{r}_y|| = || \begin{vmatrix} \hat{\boldsymbol{\imath}} & \hat{\boldsymbol{\jmath}} & \hat{\boldsymbol{k}} \\ 1 & 0 & -2 \\ 0 & 1 & -3 \end{vmatrix} || = ||(2,3,1)|| = \sqrt{14}$$

Hence the integral becomes

$$\int_{0}^{3} \int_{0}^{2-\frac{2}{3}x} x\sqrt{14} \, dy \, dx = \sqrt{14} \int_{0}^{3} xy \Big|_{0}^{2-\frac{2}{3}x} \, dx = \sqrt{14} \int_{0}^{3} x(2-\frac{2}{3}x) \, dx = \sqrt{14} \int_{0}^{3} 2x - \frac{2}{3}x^{2} \, dx$$

$$\int_0^3 2x - \frac{2}{3}x^2 \, dx = \left. x^2 - \frac{2}{9}x^3 \right|_0^3 = 9 - 6 = 3$$

We have that

$$\iint_{\Sigma} x \, dS = \sqrt{14} \int_0^3 2x - \frac{2}{3} x^2 \, dx = \boxed{3\sqrt{14}}$$

Problem 4. If the vector field is conservative, there exists an f such that

$$f_x = \cos x + 2yz$$
 and $f_y = \sin y + 2xz$ and $f_z = z + 2xy$

Then

$$f = \int f_x \, dx = \sin x + 2xyz + g(y, z)$$

Then

$$f_y = 2xz + \frac{\partial g}{\partial y} = \sin y + 2xz$$

Hence $\frac{\partial g}{\partial y} = \sin y \Rightarrow g = -\cos y + h(z)$. Therefore, $f = \sin x + 2xyz - \cos y + h(z)$. Again taking the derivative in terms of z, we get $f_z = 2xy + h'(z) = z + 2xy \Rightarrow h'(z) = z \Rightarrow h(z) = \frac{z^2}{2} + C$. Since we can choose any constant, let C = 0. Thus, we have obtained a potential function

$$f = \sin x + 2xyz - \cos y + \frac{z^2}{2}$$

Note that the starting point of r is (0,0,0) and the ending point is $(\pi,\pi,\frac{1}{\pi})$. Then we have that the integral is equal to

$$f(\pi, \pi, \frac{1}{\pi}) - f(0, 0, 0) = 2\pi + 1 + \frac{1}{2\pi^2} - (-1) = 2\pi^2 + \frac{1}{2\pi^2}$$