CHAPTER 2. MATRIX ALGEBRA

Keywords:	Matrix multiplication,	transpose of a matrix	A^T , inverse	matrix A^{-1}
-----------	------------------------	-----------------------	-----------------	-----------------

(i) $A \begin{bmatrix} b_1 & \cdots & b_n \end{bmatrix} = \begin{bmatrix} Ab_1 & \cdots & Ab_n \end{bmatrix}$	(ii) $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ for 2 × 2 A with $ad - bc \neq 0$	(iii) $[A \mid I] \rightarrow [I \mid A^{-1}]$ for any square matrix A
(iv) $(AB)^T = B^T A^T$	$(v) (AB)^{-1} = B^{-1}A^{-1}$	(vi) $(A^{-1})^T = (A^T)^{-1}$
for any matrices A, B	for invertible matrices A, B	for an invertible matrix A

Theorem 1. An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n .

Theorem 2. (Invertible Matrix Theorem) For an $n \times n$ matrix A, (a)-(l) are all equivalent

(i) A has n pivot (columns) \Leftrightarrow (d) \Leftrightarrow (e) \Leftrightarrow (f) (ii) A has n pivot (rows) \Leftrightarrow (g) \Leftrightarrow (h) \Leftrightarrow (i)

CHAPTER 3. DETERMINANTS

Keywords: Determinants, Cofactor Expansion across a row or a column, relationship between row operations and determinants, Cramer's Rule, Areas and volumes as determinants.

Defintion 3. Let A be an $n \times n$ -matrix.

- (a) The submatrix A_{ij} is an $(n-1) \times (n-1)$ matrix obtained from A by deleting *i*th row and *j*th column.
- (b) determinant of A is recursively defined as

$$a_{11} \det A_{11} - a_{12} \det A_{12} + \dots + (-1)^{1+n} a_{1n} \det A_{1n}$$

Theorem 5. If *A* is a triangular matrix, then $\det A$ is the product of the entries on the diagonal of *A*.

Theorem 6. A square matrix *A* is invertible if and only if det $A \neq 0$.

Theorem 7. det $A = \det A^T$ and det $(AB) = (\det A)(\det B)$

Cramer's Rule Let A be invertible $n \times n$ -matrix and $b \in \mathbb{R}^n$. Then the *i*th entry x_i of the unique solution is given by

 $x_i = \frac{\det A_i(b)}{\det A}$ where $A_i(b) = \begin{bmatrix} a_1 & \cdots & b & \cdots & a_n \end{bmatrix}$.

Determinant and Volumes

- (a) (Parallelogram) Let $v_1, v_2 \in \mathbb{R}^2$. Then the area of the parallelogram formed by v_1 and v_2 is det A where $A = \begin{bmatrix} v_1 & v_2 \end{bmatrix}$.
- (b) (Parallelopiped) Let $v_1, v_2, v_3 \in \mathbb{R}^3$. Then the volume of the parallelopiped formed by v_1, v_2, v_3 is det *A* where $A = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}$.

Definiton 4. The (i, j)-cofactor of A is $C_{ij} = (-1)^{i+j} \det A_{ij}$

cofactor expansion across row i

 $\det A = a_{i1}C_{i1} + \dots + a_{in}C_{in}$

cofactor expansion down column j

 $\det A = a_{1j}C_{1j} + \dots + a_{nj}C_{nj}$

- (a) $\det B = \det A$ if *B* is obtained by adding a multiple of another row.
- (b) If *B* is obtained by interchanging two rows, then $\det B = -\det A$.
- (c) If B is obtained by multipying k to a row, $\det B = k \det A$.

Let A be an invertible $n \times n$ matrix. Then ⁽¹⁾

$$A^{-1} = \frac{1}{\det A} \operatorname{adj} A$$

= $\frac{1}{\det A} \begin{bmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{bmatrix}$

(a) $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation with standard matrix A. If S is a region in \mathbb{R}^2 with finite area. Then

area of
$$T(S) = |\det A| \cdot$$
 area of S

(b) $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation with standard matrix A. If S is a region in \mathbb{R}^3 with finite volume. Then

volume of $T(S) = |\det A| \cdot \text{volume of } S$

⁽¹⁾The (i, j)-entry of A^{-1} is C_{ji} divided by det A, NOT C_{ij} .

Keywords: vector space, subspace, basis, null, column, and row spaces, dimension, coordinate vectors, change-of-coordinate matrix, rank-nullity theorem.

Definition 8. A vector space is a nonempty set V of objects called vectors with two operations addition and mutlipliaction by scalars (real numbers) with ten properties in pg. 202-203.

Definiton 9. A subspace of a vector space V is a subset W of V such that (i) $0 \in W$, (ii) is closed under addition, and (iii) is closed under scalar multiplication.

Definiton 10. A linear transformation $T: V \rightarrow V$ W is a function such that T(u+v) = T(u) + T(v)and T(cu) = cT(u).

Definition 13. A set of vectors $\{v_1, \ldots, v_p\}$ in V is linearly independent if the linear dependence **relation** $c_1v_1 + \cdots + c_pv_p = 0$ has only trivial solution.

Theorem 14. $\{v_1, \ldots, v_p\}$ with $v_1 \neq 0$ is linearly dependent if and only if some v_i (j > 1) is a linear combination of v_1, \ldots, v_{j-1} .

Definiton 15. A indexed set \mathscr{B} of vectors in a vector space V is called a **basis** if (i) \mathscr{B} is linearly independent and (ii) Span $\mathscr{B} = V$.

Definiton 16. If a vector space V is spanned by a finite set, then V is said to be **finite-dimensional** and the number of vectors in a basis is called a dimension of V. ⁽³⁾

Example 11. The set \mathbb{R}^n of column vectors with *n* entries and the set \mathbb{P}_n of polynomials of degree at most n are vector spaces.⁽²⁾Also, a subspace of a vector space is a vector space.

Example 12. Let $v_1, \ldots, v_p \in V$. Then the span

 $\operatorname{Span}\{v_1,\ldots,v_p\} = \{c_1v_1 + \cdots + c_pv_p \mid c_i \in \mathbb{R}\}$

of $\{v_1, \ldots, v_n\}$ is a subspace of V. This is called the **subspace** of V generated by $\{v_1, \ldots, v_p\}$.

 $^{(2)} \mathrm{The}$ addition and scalar multiplications of \mathbb{R}^n and \mathbb{P}_n are defined differently.

Theorem 17. (Spanning Set Theorem) Let S = $\{v_1, \ldots, v_p\}$ be a subset of V and let W = Span S. Then (i) if $v_k \in S$ is a linear combination of the remaining vectors in S, then the set $\{v_1, \ldots, v_k, \ldots, v_p\}$ formed by removing v_k from S still spans W and (ii) if $S \neq \{0\}$, then a subset of S is a basis of W. **Theorem 18.** (a) If a vector space V has a basis \mathscr{B} with *n* vectors, then any set in *V* containing more than n vectors must be linearly dependent. Also, every basis of V must consist of exactly nvectors. (b) Every vector can be written uniquely as a linear combinations of vectors in \mathcal{B} . **Theorem 19.** Let W be a subspace of a finite-

dimensional vector space. Then dim $W \leq \dim V$. **Theorem 20.** For dim V = n, (i) any linearly independent set of V with n-elements or (ii) any spanning set of V with n-elements is a basis.

Let A be a $m \times n$ -matrix. Write $A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}$ where a_i s are the column vectors of A. Also, let r_1, \ldots, r_m be its row vectors. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation defined by A.

Subspace	A basis ⁽⁴⁾	Dimension
$\operatorname{Nul} A = \{ x \in \mathbb{R}^n \mid Ax = 0 \}$	${\mathscr B}$ is the set of vectors appearing in the	nullity $A = \dim \operatorname{Nul} A$
$= \operatorname{Ker}(T)$ subspace of \mathbb{R}^n	general solution in parametric vector form	
$Col A = Span \{a_1, \dots, a_n\}$	$\mathscr{B} = \{ \text{ pivot columns of } A \}$	$\operatorname{rank} A = \operatorname{dim} \operatorname{Col} A$
$=$ Range (T) subspace of \mathbb{R}^m		
Row $A = $ Span $\{r_1, \ldots, r_n\}$	${\mathscr B}$ is the set of nonzero row vectors of	Row A = Row B
is a subspace of \mathbb{R}^n	an echelon form B of A	$A \rightarrow B$ row. eq.

Theorem 21 (Rank-Nullity).

rank A + nullity A

= # of cols. of A

Definiton 22. The standard basis is the set $\{e_1,\ldots,e_n\}$ in \mathbb{R}^n where e_i is the vector whose entries are all zero except 1 at the *i*th entry.

Definition 23. $\mathscr{B} = \{b_1, \ldots, b_n\}$ **Definition 24.** $\mathscr{B} = \{b_1, \ldots, b_n\},$ be a basis.

$$[x]_{\mathscr{B}} = \begin{vmatrix} c_1 \\ \vdots \\ c_n \end{vmatrix}$$

given $x = c_1b_1 + \cdots + c_nb_n$, is called coordinate vector of x relative to \mathscr{B} .

 $\mathscr{C} = \{c_1, \ldots, c_n\}$ be bases of V.

$$\underset{\mathscr{C} \leftarrow \mathscr{B}}{P} = \begin{bmatrix} [b_1]_{\mathscr{C}} & \cdots & [b_n]_{\mathscr{C}} \end{bmatrix}$$

is called the change-of-coordinates **matrix** from \mathcal{B} to \mathcal{C} . Also,

$$\begin{bmatrix} c_1 \cdots c_n \middle| b_1 \cdots b_n \end{bmatrix} \to \begin{bmatrix} I_n \middle| P \\ \mathscr{C} \leftarrow \mathscr{B} \end{bmatrix}$$

⁽³⁾A basis of a vector space is not unique, but they all have the same number of vectors by Theorem 18.

⁽⁴⁾There are infinitely many basis to a vector space. This is just one of them.