Chapter 2. Matrix Algebra
Keywords: Matrix multiplication, transpose of a matrix A^{T}, inverse matrix A^{-1}

(i) $A\left[\begin{array}{lll}b_{1} & \cdots & b_{n}\end{array}\right]=\left[\begin{array}{lll}A b_{1} & \cdots & A b_{n}\end{array}\right]$	(ii) $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$ for $2 \times 2 A$ with $a d-b c \neq 0$	(iii) $[A \mid I] \rightarrow\left[I \mid A^{-1}\right]$ for any square matrix A
(iv) $(A B)^{T}=B^{T} A^{T}$ for any matrices A, B	(v) $(A B)^{-1}=B^{-1} A^{-1}$ for invertible matrices A, B	(vi) $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$ for an invertible matrix A

Theorem 1. An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n}.
Theorem 2. (Invertible Matrix Theorem) For an $n \times n$ matrix A, (a)-(l) are all equivalent
(i) A has n pivot (columns) $\Leftrightarrow(\mathrm{d}) \Leftrightarrow$ (e) \Leftrightarrow (f) (ii) A has n pivot (rows) \Leftrightarrow (g) \Leftrightarrow (h) \Leftrightarrow (i)

CHAPTER 3. DETERMINANTS

Keywords: Determinants, Cofactor Expansion across a row or a column, relationship between row operations and determinants, Cramer's Rule, Areas and volumes as determinants.

Defintion 3. Let A be an $n \times n$-matrix.
(a) The submatrix $A_{i j}$ is an $(n-1) \times(n-1)$ matrix obtained from A by deleting i th row and j th column.
(b) determinant of A is recursively defined as $a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}+\cdots+(-1)^{1+n} a_{1 n} \operatorname{det} A_{1 n}$

Theorem 5. If A is a triangular matrix, then $\operatorname{det} A$ is the product of the entries on the diagonal of A. Theorem 6. A square matrix A is invertible if and only if $\operatorname{det} A \neq 0$.
Theorem 7. $\operatorname{det} A=\operatorname{det} A^{T}$ and

$$
\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)
$$

Cramer's Rule Let A be invertible $n \times n$-matrix and $b \in \mathbb{R}^{n}$. Then the i th entry x_{i} of the unique solution is given by

$$
x_{i}=\frac{\operatorname{det} A_{i}(b)}{\operatorname{det} A}
$$

where $A_{i}(b)=\left[\begin{array}{lllll}a_{1} & \cdots & b & \cdots & a_{n}\end{array}\right]$.

Determinant and Volumes

(a) (Parallelogram) Let $v_{1}, v_{2} \in \mathbb{R}^{2}$. Then the area of the parallelogram formed by v_{1} and v_{2} is $\operatorname{det} A$ where $A=\left[\begin{array}{ll}v_{1} & v_{2}\end{array}\right]$.
(b) (Parallelopiped) Let $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{3}$. Then the volume of the parallelopiped formed by v_{1}, v_{2}, v_{3} is $\operatorname{det} A$ where $A=\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right]$.

Defintion 4. The (i, j)-cofactor of A is

$$
C_{i j}=(-1)^{i+j} \operatorname{det} A_{i j}
$$

cofactor expansion across row i

$$
\operatorname{det} A=a_{i 1} C_{i 1}+\cdots+a_{i n} C_{i n}
$$

cofactor expansion down column j

$$
\operatorname{det} A=a_{1 j} C_{1 j}+\cdots+a_{n j} C_{n j}
$$

(a) $\operatorname{det} B=\operatorname{det} A$ if B is obtained by adding a multiple of another row.
(b) If B is obtained by interchanging two rows, then $\operatorname{det} B=-\operatorname{det} A$.
(c) If B is obtained by multipying k to a row, $\operatorname{det} B=k \operatorname{det} A$.

Let A be an invertible $n \times n$ matrix. Then ${ }^{(1)}$

$$
\begin{aligned}
A^{-1} & =\frac{1}{\operatorname{det} A} \operatorname{adj} A \\
& =\frac{1}{\operatorname{det} A}\left[\begin{array}{cccc}
C_{11} & C_{21} & \cdots & C_{n 1} \\
C_{12} & C_{22} & \cdots & C_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
C_{1 n} & C_{2 n} & \cdots & C_{n n}
\end{array}\right]
\end{aligned}
$$

(a) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation with standard matrix A. If S is a region in \mathbb{R}^{2} with finite area. Then
area of $T(S)=|\operatorname{det} A| \cdot$ area of S
(b) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation with standard matrix A. If S is a region in \mathbb{R}^{3} with finite volume. Then
volume of $T(S)=|\operatorname{det} A| \cdot$ volume of S

[^0]
Chapter 4: Vector Spaces

Keywords: vector space, subspace, basis, null, column, and row spaces, dimension, coordinate vectors, change-of-coordinate matrix, rank-nullity theorem.

Defintion 8. A vector space is a nonempty set V of objects called vectors with two operations addition and mutlipliaction by scalars (real numbers) with ten properties in pg. 202-203.
Defintion 9. A subspace of a vector space V is a subset W of V such that (i) $0 \in W$, (ii) is closed under addition, and (iii) is closed under scalar multiplication.
Defintion 10. A linear transformation $T: V \rightarrow$ W is a function such that $T(u+v)=T(u)+T(v)$ and $T(c u)=c T(u)$.

Defintion 13. A set of vectors $\left\{v_{1}, \ldots, v_{p}\right\}$ in V is linearly independent if the linear dependence relation $c_{1} v_{1}+\cdots+c_{p} v_{p}=0$ has only trivial solution.
Theorem 14. $\left\{v_{1}, \ldots, v_{p}\right\}$ with $v_{1} \neq 0$ is linearly dependent if and only if some $v_{j}(j>1)$ is a linear combination of v_{1}, \ldots, v_{j-1}.
Defintion 15. A indexed set \mathscr{B} of vectors in a vector space V is called a basis if (i) \mathscr{B} is linearly independent and (ii) Span $\mathscr{B}=V$.
Defintion 16. If a vector space V is spanned by a finite set, then V is said to be finite-dimensional and the number of vectors in a basis is called a dimension of V. ${ }^{\text {(3) }}$

[^1]Example 11. The set \mathbb{R}^{n} of column vectors with n entries and the set \mathbb{P}_{n} of polynomials of degree at most n are vector spaces. ${ }^{(2)}$ Also, a subspace of a vector space is a vector space.
Example 12. Let $v_{1}, \ldots, v_{p} \in V$. Then the span

$$
\operatorname{Span}\left\{v_{1}, \ldots, v_{p}\right\}=\left\{c_{1} v_{1}+\cdots+c_{p} v_{p} \mid c_{i} \in \mathbb{R}\right\}
$$

of $\left\{v_{1}, \ldots, v_{n}\right\}$ is a subspace of V. This is called the subspace of V generated by $\left\{v_{1}, \ldots, v_{p}\right\}$.
${ }^{(2)}$ The addition and scalar multiplications of \mathbb{R}^{n} and \mathbb{P}_{n} are defined differently.

Theorem 17. (Spanning Set Theorem) Let $S=$ $\left\{v_{1}, \ldots, v_{p}\right\}$ be a subset of V and let $W=\operatorname{Span} S$. Then (i) if $v_{k} \in S$ is a linear combination of the remaining vectors in S, then the set $\left\{v_{1}, \ldots, \nu / k, \ldots, v_{p}\right\}$ formed by removing v_{k} from S still spans W and (ii) if $S \neq\{0\}$, then a subset of S is a basis of W.

Theorem 18. (a) If a vector space V has a basis \mathscr{B} with n vectors, then any set in V containing more than n vectors must be linearly dependent. Also, every basis of V must consist of exactly n vectors. (b) Every vector can be written uniquely as a linear combinations of vectors in \mathscr{B}.
Theorem 19. Let W be a subspace of a finitedimensional vector space. Then $\operatorname{dim} W \leq \operatorname{dim} V$. Theorem 20. For $\operatorname{dim} V=n$, (i) any linearly independent set of V with n-elements or (ii) any spanning set of V with n-elements is a basis.

Let A be a $m \times n$-matrix. Write $A=\left[\begin{array}{lll}a_{1} & \cdots & a_{n}\end{array}\right]$ where a_{i} s are the column vectors of A. Also, let r_{1}, \ldots, r_{m} be its row vectors. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be the linear transformation defined by A.

Subspace	A basis $^{(4)}$	Dimension
Nul $A=\left\{x \in \mathbb{R}^{n} \mid A x=0\right\}$ $=\operatorname{Ker}(T)$ subspace of \mathbb{R}^{n}	\mathscr{B} is the set of vectors appearing in the general solution in parametric vector form	nullity $A=\operatorname{dim~Nul~} A$
Col $A=\operatorname{Span}\left\{a_{1}, \ldots, a_{n}\right\}$ $=\operatorname{Range}(T)$ subspace of \mathbb{R}^{m}	$\mathscr{B}=\{$ pivot columns of $A\}$	rank $A=\operatorname{dim}$ Col A
Row $A=\operatorname{Span}\left\{r_{1}, \ldots, r_{n}\right\}$ is a subspace of \mathbb{R}^{n}	\mathscr{B} is the set of nonzero row vectors of an echelon form B of A	Row $A=$ Row B $A \rightarrow B$ row. eq.

Theorem 21 (Rank-Nullity).
rank $A+$ nullity A
$=\#$ of cols. of A
Defintion 22. The standard basis is the set $\left\{e_{1}, \ldots, e_{n}\right\}$ in \mathbb{R}^{n} where e_{i} is the vector whose entries are all zero except 1 at the i th entry.

Defintion 23. $\mathscr{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ be a basis.

$$
[x]_{\mathscr{B}}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]
$$

given $x=c_{1} b_{1}+\cdots+c_{n} b_{n}$, is called coordinate vector of x relative to \mathscr{B}.

Defintion 24. $\mathscr{B}=\left\{b_{1}, \ldots, b_{n}\right\}$, $\mathscr{C}=\left\{c_{1}, \ldots, c_{n}\right\}$ be bases of V.

$$
\underset{\mathscr{C} \leftarrow \mathscr{B}}{P}=\left[\begin{array}{lll}
{\left[b_{1}\right]_{\mathscr{C}}} & \cdots & {\left[b_{n}\right]_{\mathscr{C}}}
\end{array}\right]
$$

is called the change-of-coordinates
matrix from \mathscr{B} to \mathscr{C}. Also,

$$
\left[c_{1} \cdots c_{n} \mid b_{1} \cdots b_{n}\right] \rightarrow\left[\begin{array}{l|c}
I_{n} & \underset{\mathscr{C} \leftarrow \mathscr{B}}{P}
\end{array}\right]
$$

[^2]
[^0]: ${ }^{(1)}$ The (i, j)-entry of A^{-1} is $C_{j i}$ divided by $\operatorname{det} A$, NOT $C_{i j}$.

[^1]: ${ }^{(3)} \mathrm{A}$ basis of a vector space is not unique, but they all have the same number of vectors by Theorem 18

[^2]: ${ }^{(4)}$ There are infinitely many basis to a vector space. This is just one of them.

