Problem 1.

(a) Since the matrix is (upper) triangular, the eigenvalues are $\lambda=1,2,3$.
(b)

$$
A-\lambda=\left[\begin{array}{rrr}
0 & 1 & 0 \\
0 & 1 & -2 \\
0 & 0 & 2
\end{array}\right]
$$

Then
is an eigenvector of A corresponding to 1 (by observation). To see this without guess-andcheck, note that for $\left[\begin{array}{lll}x & y & z\end{array}\right]^{T}$ to be an eigenvector for 1 , by the first and the third row, we must have $y=0, z=0$.
(c) A is diagonalizable because A is 3×3 and has three distinct eigenvalues.
(d) A is invertible because $\operatorname{det}(A)=1 \cdot 2 \cdot 3=6 \neq 0$.

Problem 2. Since $A v=\lambda v$, we have $A^{2} v=A(\lambda v)=\lambda A v=\lambda^{2} v$. By the same reasoning,

$$
0=A^{5} v=\lambda^{5} v
$$

For a nonzero vector $v, \lambda^{5} v=0 \Rightarrow \lambda^{5}=0 \Rightarrow \lambda=0$.
Problem 3. We want to find the least squares solution to the system

$$
\underbrace{\left[\begin{array}{rr}
1 & 1 \\
-3 & 3 \\
-2 & 1 \\
2 & -4
\end{array}\right]}_{=A} x=\underbrace{\left[\begin{array}{r}
2 \\
0 \\
1 \\
-3
\end{array}\right]}_{=b}
$$

We have

$$
\begin{aligned}
& A^{T} A=\left[\begin{array}{rrrr}
1 & -3 & -2 & 2 \\
1 & 3 & 1 & -4
\end{array}\right]\left[\begin{array}{rr}
1 & 1 \\
-3 & 3 \\
-2 & 1 \\
2 & -4
\end{array}\right]=\left[\begin{array}{rr}
18 & -18 \\
-18 & 27
\end{array}\right] \\
& A^{T} b=\left[\begin{array}{rrrr}
1 & -3 & -2 & 2 \\
1 & 3 & 1 & -4
\end{array}\right]\left[\begin{array}{r}
2 \\
0 \\
1 \\
-3
\end{array}\right]=\left[\begin{array}{r}
-6 \\
15
\end{array}\right]
\end{aligned}
$$

The augmented matrix corresponding to $A^{T} A x=A^{T} b$ is

$$
\left[\begin{array}{rrr}
18 & -18 & -6 \\
-18 & 27 & 15
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
3 & -3 & -1 \\
0 & 9 & 9
\end{array}\right]
$$

Therefore, $x_{2}=1$, and $x_{1}=\frac{2}{3}$. The least square solution is thus,

$$
\hat{x}=\left[\begin{array}{l}
\frac{2}{3} \\
1
\end{array}\right]
$$

Problem 4. We want to find the least squares solution to

$$
\underbrace{\left[\begin{array}{rr}
1 & -1 \\
-2 & 1 \\
1 & -3
\end{array}\right]}_{=A} x=\underbrace{\left[\begin{array}{r}
3 \\
-2 \\
1
\end{array}\right]}_{=b}
$$

Then normalized equation is

$$
\begin{aligned}
& A^{T} A=\left[\begin{array}{rrr}
1 & -2 & 1 \\
-1 & 1 & -3
\end{array}\right]\left[\begin{array}{rr}
1 & -1 \\
-2 & 1 \\
1 & -3
\end{array}\right]=\left[\begin{array}{rr}
6 & -6 \\
-6 & 11
\end{array}\right] \\
& A^{T} b=\left[\begin{array}{rrr}
1 & -2 & 1 \\
-1 & 1 & -3
\end{array}\right]\left[\begin{array}{r}
3 \\
-2 \\
1
\end{array}\right]=\left[\begin{array}{r}
6 \\
-2
\end{array}\right]
\end{aligned}
$$

The augmented matrix is

$$
\left[\begin{array}{rrr}
6 & -6 & 6 \\
-6 & 11 & -2
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & -1 & 1 \\
0 & 5 & 4
\end{array}\right]
$$

Then $x_{2}=\frac{4}{5}$ and $x_{1}=1+x_{2}=\frac{9}{5}$. Therefore, the least square solution is

$$
\hat{x}=\left[\begin{array}{l}
9 \\
\frac{5}{5} \\
5
\end{array}\right]
$$

Problem 5. The point in W that is closest to the point y is

$$
\operatorname{Proj}_{W} y=\frac{y \cdot(1,1)}{(1,1) \cdot(1,1)}(1,1)=\frac{(3,4) \cdot(1,1)}{(1,1) \cdot(1,1)}(1,1)=\frac{7}{2}(1,1)=\left(\frac{7}{2}, \frac{7}{2}\right) .
$$

Problem 6. By orthogonal decomposition,

$$
y=\operatorname{Proj}_{W} y+\underbrace{z}_{\in W^{T}}=\left(\frac{7}{2}, \frac{7}{2}\right)+z \Rightarrow z=\left(-\frac{1}{2}, \frac{1}{2}\right)
$$

To conclude,

$$
y=\underbrace{\left(\frac{7}{2}, \frac{7}{2}\right)}_{\in W}+\underbrace{\left(-\frac{1}{2}, \frac{1}{2}\right)}_{\in W^{T}} .
$$

Problem 7.

$$
\begin{aligned}
w^{\prime}=\operatorname{Proj}_{W} y & =\frac{(-5,2,2) \cdot(-2,3,3)}{(-2,3,3) \cdot(-2,3,3)}(-2,3,3)+\frac{(-5,2,2) \cdot(-3,0,-2)}{(-3,0,-2) \cdot(-3,0,-2)}(-3,0,-2) \\
& \Rightarrow \frac{22}{22}(-2,3,3)+\frac{11}{13}(-3,0,-2) \\
& =\left(-\frac{26}{13}, 3, \frac{39}{13}\right)+\left(-\frac{33}{13}, 0,-\frac{22}{13}\right)=\left(-\frac{59}{13}, 3, \frac{17}{13}\right)
\end{aligned}
$$

Solving for z, we should see that

$$
(-5,2,2)=\left(-\frac{59}{13}, 3, \frac{17}{13}\right)+z=\left(-\frac{59}{13}, 3, \frac{17}{13}\right)+\left(-\frac{6}{13},-1, \frac{9}{13}\right)
$$

Problem 8. Let $x_{1}=(1,0,1)$ and $x_{2}=(0,1,1)$. Then the Gram-Schmidt process yields

$$
\begin{aligned}
v_{1} & =x_{1}=(1,0,1) \\
v_{2} & =x_{2}-\frac{x_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}=(0,1,1)-\frac{(0,1,1) \cdot(1,0,1)}{(1,0,1) \cdot(1,0,1)}(1,0,1) \\
& =(0,1,1)-\frac{1}{2}(1,0,1)=\left(-\frac{1}{2}, 1, \frac{1}{2}\right)
\end{aligned}
$$

Then $\left\{(1,0,1),\left(-\frac{1}{2}, 1, \frac{1}{2}\right)\right\}$ is an orthogonal basis. Next,

$$
\begin{aligned}
& u_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}=\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) \\
& u_{2}=\frac{v_{2}}{\left\|v_{2}\right\|}=\frac{\sqrt{2}}{\sqrt{3}}\left(-\frac{1}{2}, 1, \frac{1}{2}\right)=\left(-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)
\end{aligned}
$$

Then $\left\{\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right),\left(-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)\right\}$ is an orthonormal basis.

Problem 9.

(a) False Let v be an eigenvector corresponding to λ. Then $a v$ is also an eigenvector corresponding to λ for any $a \neq 0$. If you have one, then you have infinitely many of them.
(b) True An orthogonal set of nonzero vectors is automatically linearly independent. You cannot have linearly independent set in \mathbb{R}^{5} with 6 elements because the dimension of \mathbb{R}^{5} is 5 .
(c) False. Consider the following least squares problem

$$
\underbrace{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]}_{=A} x=\underbrace{\left[\begin{array}{l}
0 \\
0
\end{array}\right]}_{=b} \Rightarrow \underbrace{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]}_{A^{T} A} x=\underbrace{\left[\begin{array}{l}
0 \\
0
\end{array}\right]}_{A^{T} b}
$$

(d) True We use the theorem that says $y \in W$ if and only if $y=\operatorname{Proj}_{W} y$.

Problem 10.

(a) The matrix for T relative to basis \mathscr{B}_{1} and \mathscr{B}_{2} is given by

$$
\left.[T]_{\mathscr{B}_{2}, \mathscr{B}_{1}}=\left[[T(2,4)]_{\mathscr{B}_{2}} \quad[T(1,7)]_{\mathscr{B}_{2}}\right]=\left[[(-2,-2)]_{\mathscr{B}_{2}} \quad[(5,-1)]_{\mathscr{R}_{2}}\right]\right]
$$

This matrix is constructed in a way that

$$
[T]_{\mathscr{B}_{2}, \mathscr{B}_{1}}[x]_{\mathscr{B}_{1}}=[T(x)]_{\mathscr{B}_{2}}
$$

Since

$$
\begin{aligned}
& (-2,-2)=(1,3)+(-3,-5) \quad \Rightarrow\left[[(-2,-2)]_{\mathscr{B}_{2}}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right. \\
& (5,-1)=-7(1,3)-4(-3,-5) \Rightarrow[(5,-1)]_{\mathscr{R}_{2}}=\left[\begin{array}{l}
-7 \\
-4
\end{array}\right]
\end{aligned}
$$

For the second equation, we can work with the augmented matrix

$$
\left[\begin{array}{rrr}
1 & -3 & 5 \\
3 & -5 & -1
\end{array}\right]
$$

Therefore,

$$
[T]_{\mathscr{B}_{2}, \mathscr{B}_{1}}=\left[\begin{array}{cc}
1 & -7 \\
1 & -4
\end{array}\right]
$$

(b) By observation, $(3,11)=(2,4)+(1,7)$. Therefore, $[(3,11)]_{\mathscr{B}_{1}}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
(c) By (a), (b), and (\dagger) above, we have

$$
[T(3,11)]_{\mathscr{B}_{2}}=[T]_{\mathscr{B}_{2}, \mathscr{B}_{1}}[(3,11)]_{\mathscr{B}_{1}}=\left[\begin{array}{cc}
1 & -7 \\
1 & -4
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
-6 \\
-4
\end{array}\right]
$$

In particular, $T(3,11)=-6(1,3)-4(-3,-5)=(6,2)$

Problem 11.

(a) Let

$$
B=\left[\begin{array}{rr}
3 & -4 \\
-2 & 3
\end{array}\right] \text { then } \operatorname{det} B=1 \text { and } B^{-1}=\left[\begin{array}{ll}
3 & 4 \\
2 & 3
\end{array}\right]
$$

Then by Theorem 8 of Chapter 5 (or Theorem 9 of the Study Guide),

$$
[T]_{\mathscr{B}}=B^{-1} A B=\left[\begin{array}{ll}
3 & 4 \\
2 & 3
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
2 & 3
\end{array}\right]\left[\begin{array}{rr}
3 & -4 \\
-2 & 3
\end{array}\right]=\left[\begin{array}{rr}
12 & -11 \\
8 & -7
\end{array}\right]
$$

(b) By observation, $(7,-5)=(3,-2)-(-4,3)$, so $[(7,-5)]_{\mathscr{B}}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$.
(c) We have

$$
[T(7,-5)]_{\mathscr{A}}=[T]_{\mathscr{A}}[(7,-5)]_{\mathscr{B}}=\left[\begin{array}{rr}
12 & -11 \\
8 & -7
\end{array}\right]\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
23 \\
15
\end{array}\right]
$$

Therefore,

$$
T(7,-5)=23(3,-2)+15(-4,3)=(9,-1)
$$

Problem 12. The characteristic polynomial is

$$
\operatorname{det}\left[\begin{array}{rr}
1-\lambda & -5 \\
1 & -3-\lambda
\end{array}\right]=(1-\lambda)(-3-\lambda)+5=\lambda^{2}+2 \lambda+2 .
$$

Then

$$
\lambda=\frac{-2 \pm \sqrt{4-8}}{2}=-1 \pm i .
$$

Then

$$
A-(-1+i) I=\left[\begin{array}{rr}
2-i & -5 \\
1 & -2-i
\end{array}\right] \rightarrow\left[\begin{array}{rr}
2-i & -5 \\
0 & 0
\end{array}\right]
$$

Here we used the fact that $(2-i) \cdot\left[\begin{array}{ll}1 & -2-i\end{array}\right]=\left[\begin{array}{ll}2-i & -5\end{array}\right]$. Alternatively, we know that the algebraic multiplicty of $-1+i$ is 1 , so the dimension of the null space $\operatorname{Null}(A-(-1+i) I)=1$. Therefore, the row reduction is immediate. Then

$$
\left[\begin{array}{r}
5 \\
2-i
\end{array}\right]
$$

is an eigenvector for $-1+i$. Then we immediately get that an eigenvector for $-1-i$ is

$$
\overline{\left[\begin{array}{r}
5 \\
2-i
\end{array}\right]}=\left[\begin{array}{r}
5 \\
2+i
\end{array}\right]
$$

We did not cover the decomposition $A=P C P^{-1}$, so we will skip the solution.
Problem 13. Consider the 3×3 identity matrix $A=I_{3}$. Then

$$
A=I_{3} I_{3} I_{3}^{-1}
$$

therefore, A is diagonalizable. Since I_{3} is an upper triangular matrix, the only eigenvalue is 1 .
Problem 14. The characteristic polynomial is

$$
\operatorname{det}\left[\begin{array}{rr}
1-\lambda & 5 \\
5 & 1-\lambda
\end{array}\right]=(1-\lambda)^{2}-25=\lambda^{2}-2 \lambda-24=(\lambda-6)(\lambda+4)
$$

Therefore, the eigenvalues are $\lambda=6,-4$.

$$
A-6 I=\left[\begin{array}{rr}
-5 & 5 \\
5 & -5
\end{array}\right] \rightarrow\left[\begin{array}{rr}
-5 & 5 \\
0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rr}
-1 & 1 \\
0 & 0
\end{array}\right]
$$

so, an eigenvector of A for 6 is $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

$$
A+4 I=\left[\begin{array}{ll}
5 & 5 \\
5 & 5
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]
$$

so, an eigenvector of A for 4 is $\left[\begin{array}{r}1 \\ -1\end{array}\right]$. Therefore, $P=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$. Since $\operatorname{det} P=-2$, we have

$$
P^{-1}=-\frac{1}{2}\left[\begin{array}{rr}
-1 & -1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right]
$$

Therefore, the diagonalization is

$$
\left[\begin{array}{ll}
1 & 5 \\
5 & 1
\end{array}\right]=\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{rr}
6 & 0 \\
0 & -4
\end{array}\right]\left[\begin{array}{rr}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right]
$$

