Chapter 5. Eigenvalues and Eigenvectors

Keywords: Eigenvectors, Eigenvalues, algebraic multiplicity, geometric multiplicity, Characteristic Polynomial, Similarity, Diagonalization, Matrix Representation, Complex Eigenvalues.

Defintion 1. Let A be an $n \times n$ matrix. If there exists a (real) scalar λ and a non-zero vector $v \in \mathbb{R}^{n}$ such that $A \nu=\lambda \nu$, then λ is called an eigenvalue of A and ν is called an eigenvector of A corresponding to λ.

What is the set E_{λ} of eigenvectors (and zero vector)? We have $E_{\lambda}=\operatorname{Null}(A-\lambda I)$ because

$$
\begin{aligned}
v \in E_{\lambda} & \Leftrightarrow A v=\lambda v \quad \Leftrightarrow \quad A v=\lambda I v \\
& \Leftrightarrow A v-\lambda I v=0 \quad \Leftrightarrow \quad(A-\lambda I) v=0 \\
& \Leftrightarrow v \in \operatorname{Null}(A-\lambda I)
\end{aligned}
$$

We call E_{λ} the eigenspace of A for λ. The dimension of the eigenspace E_{λ} is called the geometric multiplicty (geo. mul.) of λ.
Theorem 2. The eigenvalues of a triangular matrix are the diagonal entries.
Theorem 3. Let v_{1}, \ldots, v_{r} be eigenvectors of pair-wise distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$. Then

$$
\left\{v_{1}, \ldots, v_{r}\right\}
$$

is a linearly independent set.

Defintion 7. A $n \times n$ matrix A is diagonalizable if A is similar to a diagonal matrix, i.e. $A=P D P^{-1}$ for some invertible matrix P and a diagonal matrix D.
Theorem 8. Let A be $n \times n$ matrix.
A is diagonalizable $\Leftrightarrow A$ has n L.I. eigenvectors

Steps to Diagonalization.

(i) Find the eigenvalue of A.
(ii) Find basis for each eigenspaces.
(iii) Construct P from the vectors in (ii).
(iv) Construct D from the corresponding eigenvalues.

The eigenvector and eigenspace of linear transformation is defined the same way from $T(\nu)=\lambda \nu$.

Let $T: V \rightarrow V$ be a linear transformation. Let $\mathscr{B}=$ $\left\{b_{1}, \ldots, b_{n}\right\}$ and $\mathscr{C}=\left\{c_{1}, \ldots, c_{n}\right\}$ be bases of an n-dim. vector space V. Define the matrix representation of T with respect to \mathscr{B} and \mathscr{C} by

$$
[T]_{\mathscr{C}, \mathscr{B}}=\left[\begin{array}{lll}
{\left[T\left(b_{1}\right)\right]_{\mathscr{C}}} & \cdots & {\left[T\left(b_{n}\right)\right]_{\mathscr{C}}}
\end{array}\right]
$$

Then for any $x \in V$, we have

$$
[T(x)]_{\mathscr{C}}=[T]_{\mathscr{C}, \mathscr{B}}[x]_{\mathscr{B}}
$$

If $\mathscr{B}=\mathscr{C}$, we simply write $[T]_{\mathscr{B}}$ instead of $[T]_{\mathscr{B}, \mathscr{B}}$.
Theorem 9. Let B be the matrix whose columns are given by a basis \mathscr{B}. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation given by $T(x)=A x$. Then $[T]_{\mathscr{B}}=B^{-1} A B$. \triangle The textbook only covers when $\mathscr{B}=\mathscr{C}$.

Defintion 4. The polynomial

$$
\operatorname{det}(A-\lambda I)
$$

in variable λ is called the characteristic polynomial of A. If λ is a root of the characteristic polynomial of A, then λ is an eigenvalue of A. The multiplicity as a root is called the algebraic multiplicity (alg. mul.).
Defintion 5. A is similar to B if there is an invertible matrix P such that $A=P B P^{-1}$. If A is similar to B, B is also similar to A.
Theorem 6. If A and B are similar, they have the same characteristic polynomial, hence the same eigenvalues with the same multiplicities.
©Two matrices with the same eigenvalues do not have to be similar. For example,

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

Theorem 10. A $n \times n$ matrix with n distinct eigenvalues is diagonalizable.
Proof. This follows from Theorem 3 and Theorem 8
Theorem 11. Let A be $n \times n$ matrix with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$.
(a) geo. mul. of $\lambda_{k} \leq$ alg. mul. of λ_{k} for $1 \leq k \leq p$.
(b) A diagonalizable \Leftrightarrow sum of geo. mul. equals $n \Leftrightarrow$ alg. mul. of $\lambda_{k}=$ geo. mul. of λ_{k} for all $1 \leq k \leq p$.
(c) A diagonalizable and \mathscr{B}_{k} is a basis for $E_{\lambda_{k}}$, then $\mathscr{B}_{1} \cup \cdots \cup \mathscr{B}_{p}$ forms an eigenvector basis for \mathbb{R}^{n}. (1)

All theory developed so far works well to \mathbb{C}^{n}. Namely, we say that λ and v is a complex eigenvalue and a complex eigenvector of an $n \times n$ matrix A if there exists $\lambda \in \mathbb{C}$ and $v \in \mathbb{C}^{n}$ such that $A v=\lambda \nu$.
\triangle (This might not be covered during class) For a $n \times n$ matrix A, if λ is an eigenvalue of A with an eigenvector v of λ. Then \bar{v} is an eigenvector for the eigenvalue $\bar{\lambda}$ where \cdot denotes complex conjugation. Theorem 12. Let A be a real 2×2 matrix with a complex eigenvalue $\lambda=a-b i(b \neq 0)$ and an asssociated eigenvector $v \in \mathbb{C}^{2}$. Then
$A=P C P^{-1}$ with $P=\left[\begin{array}{ll}\operatorname{Re} v & \operatorname{Im} v\end{array}\right]$ and $C=\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]$

[^0]Keywords: inner product, dot product, length of a vector, distance between two vectors, orthogonality, orthogonal complement, orthogonal set/basis, orthogonal matrix, orthogonal projection, Gram-Schmidt, QR factorization.

Defintion 13. For $u, v \in \mathbb{R}^{n}$, the dot product (or the inner product) of u and v is $u^{T} v$ and is written $u \cdot v$. If $u=\left[u_{1}, \ldots, u_{n}\right]^{T}$ and $v=\left[v_{1}, \ldots, v_{n}\right]^{T}$, then $u \cdot v=$ $u_{1} v_{1}+\cdots+u_{n} v_{n}$.
Defintion 14. The length $\|v\|$ of a vector is defined by $\sqrt{v \cdot v}=\sqrt{v_{1}^{2}+\cdots+v_{n}^{2}}$. In particular, $\|v\|^{2}=v \cdot v$. For a scalar $c \in \mathbb{R}$, we have $\|c v\|=\mid c\| \| v \|$. If $\|\nu\|=1$, v is called a unit vector.
Defintion 15. The distance between u and v is defined by $\operatorname{dist}(u, v)=\|u-v\|=\|v-u\|$.

Defintion 19. The set $\left\{u_{1}, \ldots, u_{p}\right\}$ of vectors in \mathbb{R}^{n} is orthogonal set if every pair of distinct vectors are orthogonal. An orthogonal basis is a orthogonal set that is also a basis.
Theorem 20. Let $\left\{u_{1}, \ldots, u_{p}\right\}$ be a orthogonal set, then it is linearly independent.
Defintion 21. Let $W \subset \mathbb{R}^{n}$ be a subspace with orthogonal basis $\left\{w_{1}, \ldots, w_{p}\right\}$ and $y \in \mathbb{R}^{n}$. The projection $\operatorname{Proj}_{W} y$ of y onto W is defined by

$$
\operatorname{Proj}_{W} y=\frac{y \cdot w_{1}}{w_{1} \cdots w_{1}} w_{1}+\cdots+\frac{y \cdot w_{p}}{w_{p} \cdot w_{p}} w_{p}
$$

Theorem 24 (Gram-Schmidt). Let $\left\{x_{1}, \ldots, x_{p}\right\}$ be a basis for a nonzero subspace W of \mathbb{R}^{n}. Then we can construct an orthogonal basis $\left\{u_{1}, \ldots, u_{p}\right\}$ via

$$
\begin{aligned}
& u_{1}=x_{1} \\
& u_{2}=x_{2}-\frac{x_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} \\
& \vdots \\
& u_{p}=x_{p}-\frac{x_{p} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}-\cdots-\frac{x_{p} \cdot u_{p-1}}{u_{p-1} \cdot u_{p-1}} u_{p-1}
\end{aligned}
$$

and $\operatorname{Span}\left\{x_{1}, \ldots, x_{k}\right\}=\operatorname{Span}\left\{u_{1}, \ldots, u_{k}\right\}$ for $1 \leq k \leq p$. In addition, one can obtain orthonormal basis via normalization, i.e. $\left\{\frac{u_{1}}{\left\|u_{1}\right\|}, \ldots, \frac{u_{p}}{\left\|u_{p}\right\|}\right\}$.

Defintion 26. For $m \times n A$ and $b \in \mathbb{R}^{m}$, a least-squares solution of $A x=b$ is $\hat{x} \in \mathbb{R}^{n}$ such that $\|b-A \hat{x}\| \leq$ $\|b-A x\|$ for all $x \in \mathbb{R}^{n}$.

To find \hat{x}, we solve the normal equation for $A x=$ $b, A^{T} A x=A^{T} b$ which is always consistent. When $A^{T} A$ is invertible (this is not always the case), we have

$$
\hat{x}=\left(A^{T} A\right)^{-1} A^{T} b .
$$

Defintion 16. Two vectors u and v are orthogonal if $u \cdot v=0$. We sometimes denote it by $u \perp v$.
Theorem 17 (Pythagorean). If $u \perp v$, then

$$
\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}
$$

Defintion 18. For a subspace $W \subset \mathbb{R}^{n}$, a vector v is orthogonal to W if for all $w \in W, v \perp w$. The set of all vectos v that are orthogonal to W is called the orthogonal complement of W and is denoted by W^{\perp}. W^{\perp} is a subspace of \mathbb{R}^{n}.

$$
(\operatorname{Row} A)^{\perp}=\operatorname{Nul} A \quad \text { and } \quad(\operatorname{Col} A)^{\perp}=\operatorname{Nul} A^{T}
$$

Theorem 22. Let $W \subset \mathbb{R}^{n}$ be a subspace of \mathbb{R}^{n}. Let $y \in \mathbb{R}^{n}$. Then y can be uniquely written as

$$
y=\hat{y}+z
$$

where $\hat{y} \in W$ and $z \in W^{\perp}$. In fact, $\hat{y}=\operatorname{Proj}_{W} y=$ $U U^{T} y$ where U is the matrix whose columns are a orthonormal basis of W. Furthermore,
(a) $y \in W$ if and only if $y=\operatorname{Proj}_{W} y$.
(b) \hat{y} is the closest point to y in W in the sense that $\|y-\hat{y}\|<\|y-w\|$ for all $w \in W$.
Theorem 23. A matrix U is orthogonal (i.e. $U^{T} U=$ I) if and only if the columns of U form an orthonormal basis of \mathbb{R}^{n}. If U is square, U orthogonal if and only if $U^{T}=U^{-1}$.

Theorem 25 (QR Factorization). Let A be an $m \times n$ matrix with linearly independent columns. Then $A=$ $Q R$ where $Q=\left[\begin{array}{lll}u_{1} & \cdots & u_{n}\end{array}\right]$ is an $m \times n$ orthogonal matrix for some orthonormal basis $\left\{u_{1}, \ldots, u_{n}\right\}$ for $\operatorname{Col} A$, and R is an $n \times n$ upper triangular invertible matrix with positive entries on its diagonal with $R=Q^{T} A$.
If one chooses an arbitrary orthonormal basis of $\operatorname{Col} A, Q^{T} A$ may not be have positive diagonal entry. If the k th diagonal entry $r_{k k}$ of R is negative, we can replace both $r_{k k}$ and u_{k} by $-r_{k k}$ and $-u_{k}$ respectively.

Least-squares solution of $A x=b$ may not be unique. However, it is unique in the following situation.
Theorem 27. Let A be an $m \times n$ matrix with linearly independent columns. Then we have a QR factorization $A=Q R$. Then for each $b \in \mathbb{R}^{m}$, the equation $A x=b$ has a unique least-square solution,

$$
\hat{x}=R^{-1} Q^{T} b
$$

[^0]: ${ }^{(1)} \cup$ denotes set union. The union $\mathscr{B}_{1} \cup \cdots \cup \mathscr{B}_{p}$ is a new set that contains all elements of \mathscr{B}_{k} for $1 \leq k \leq p$.

