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Defintion 1. Let A be an n×n matrix. If there exists a
(real) scalarλ and a non-zero vector v ∈Rn such that
Av =λv , then λ is called an eigenvalue of A and v is
called an eigenvector of A corresponding to λ.

What is the set Eλ of eigenvectors (and zero vec-
tor)? We have Eλ = Null(A−λI ) because

v ∈ Eλ ⇔ Av =λv ⇔ Av =λI v
⇔ Av −λI v = 0 ⇔ (A−λI )v = 0
⇔ v ∈ Null(A−λI )

We call Eλ the eigenspace of A for λ. The dimension
of the eigenspace Eλ is called the geometric multi-
plicty (geo. mul.) of λ.
Theorem 2. The eigenvalues of a triangular matrix
are the diagonal entries.

Theorem 3. Let v1, . . . , vr be eigenvectors of pair-wise
distinct eigenvalues λ1, . . . ,λr . Then

{v1, . . . , vr }

is a linearly independent set.

Defintion 4. The polynomial

det(A−λI )

in variable λ is called the characteristic polynomial
of A. If λ is a root of the characteristic polynomial of
A, then λ is an eigenvalue of A. The multiplicity as a
root is called the algebraic multiplicity (alg. mul.).

Defintion 5. A is similar to B if there is an invertible
matrix P such that A = PBP−1. If A is similar to B , B
is also similar to A.

Theorem 6. If A and B are similar, they have the same
characteristic polynomial, hence the same eigenval-
ues with the same multiplicities.

"Two matrices with the same eigenvalues do not
have to be similar. For example,[

1 0
0 1

]
and

[
1 1
0 1

]

Defintion 7. A n ×n matrix A is diagonalizable if A
is similar to a diagonal matrix, i.e. A = PDP−1 for
some invertible matrix P and a diagonal matrix D .

Theorem 8. Let A be n ×n matrix.

A is diagonalizable ⇔ A has n L.I. eigenvectors

Steps to Diagonalization.
(i) Find the eigenvalue of A.

(ii) Find basis for each eigenspaces.
(iii) Construct P from the vectors in (ii).
(iv) Construct D from the corresponding eigen-

values.

The eigenvector and eigenspace of linear trans-
formation is defined the same way from T (v) =λv .

Let T : V →V be a linear transformation. Let B =
{b1, . . . ,bn} be a basis of an n-dim. vector space V .
Define the matrix representation of T with respect
to B by

[T ]B = [
[T (b1)]B · · · [T (bn)]B

]
Then for any x ∈V , we have

[T (x)]B = [T ]B[x]B

Theorem 9. Let P be the matrix whose columns are
given by a basis B. Let T :Rn →Rn be a linear trans-
formation given by T (x) = Ax. Then [T ]B = P−1 AP .
In particular, A = P [T ]BP−1.

Theorem 10. A n×n matrix with n distinct eigenval-
ues is diagonalizable.
Proof. This follows from Theorem 3 and Theorem 8.

Theorem 11. Let A be n×n matrix with distinct eigen-
values λ1, . . . ,λp .
(a) geo. mul. of λk ≤ alg. mul. of λk for 1 ≤ k ≤ p.
(b) A diagonalizable ⇔ sum of geo. mul. equals n ⇔

alg. mul. of λk = geo. mul. of λk for all 1 ≤ k ≤ p.
(c) A diagonalizable and Bk is a basis for Eλk

, then
B1 ∪ ·· ·∪Bp forms an eigenvector basis for Rn .
(1)

All theory developed so far works well toCn . Namely,
we say that λ and v is a complex eigenvalue and a
complex eigenvector of an n × n matrix A if there
exists λ ∈C and v ∈Cn such that Av =λv .

"(This might not be covered during class) For
a n ×n matrix A, if λ is an eigenvalue of A with an
eigenvector v of λ. Then λ is an eigenvector for the
eigenvalue λ where • denotes complex conjugation.
Theorem 12. Let A be a real 2×2 matrix with a com-
plex eigenvalue λ= a −bi (b ̸= 0) and an asssociated
eigenvector v ∈C2. Then

A = PC P−1 with P = [
Re v Im v

]
and C =

[
a −b
b a

]
(1)∪ denotes set union. The union B1 ∪·· ·∪Bp is a new set that
contains all elements of Bk for 1 ≤ k ≤ p.
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CHAPTER 6. ORTHOGONALITY AND LEAST SQUARES
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Defintion 13. For u, v ∈ Rn , the dot product (or the
inner product) of u and v is uT v and is written u ·v .

If u = [
u1, . . . ,un

]T
and v = [

v1, . . . , vn
]T

, then u · v =
u1v1 +·· ·+un vn .

Defintion 14. The length ||v || of a vector is defined

by
p

v · v =
√

v2
1 +·· ·+ v2

n . In particular, ||v ||2 = v · v .

For a scalar c ∈ R, we have ||cv || = |c|||v ||. If ||v || = 1,
v is called a unit vector.

Defintion 15. The distance between u and v is de-
fined by dist(u, v) = ||u − v || = ||v −u||.

Defintion 16. Two vectors u and v are orthogonal if
u · v = 0. We sometimes denote it by u ⊥ v .

Theorem 17 (Pythagorean). If u ⊥ v , then

||u + v ||2 = ||u||2 +||v ||2
Defintion 18. For a subspace W ⊂ Rn , a vector v is
orthogonal to W if for all w ∈ W , v ⊥ w . The set of
all vectos v that are orthogonal to W is called the or-
thogonal complement of W and is denoted by W ⊥.
W ⊥ is a subspace of Rn .

(Row A)⊥ = Nul A and (Col A)⊥ = Nul AT

Defintion 19. The set {u1, . . . ,up } of vectors in Rn is
orthogonal set if every pair of distinct vectors are or-
thogonal. An orthogonal basis is a orthogonal set
that is also a basis.

Theorem 20. Let {u1, . . . ,up } be a orthogonal set with
all ui nonzero vectors, then it is linearly indepen-
dent.

Defintion 21. Let W ⊂ Rn be a subspace with or-
thogonal basis {w1, . . . , wp } and y ∈ Rn . The projec-
tion ProjW y of y onto W is defined by

ProjW y = y ·w1

w1 · · ·w1
w1 +·· ·+ y ·wp

wp ·wp
wp .

Theorem 22. Let W ⊂ Rn be a subspace of Rn . Let
y ∈Rn . Then y can be uniquely written as

y = ŷ + z

where ŷ ∈ W and z ∈ W ⊥. In fact, ŷ = ProjW y =
UU T y where U is the matrix whose columns are a
orthonormal basis of W . Furthermore,

(a) y ∈W if and only if y = ProjW y .
(b) ŷ is the closest point to y in W in the sense

that ||y − ŷ || < ||y −w || for all w ∈W .

Theorem 23. A matrix U is orthogonal (i.e. U T U =
I ) if and only if the columns of U form an orthonor-
mal basis of Rn . If U is square, U orthogonal if and
only if U T =U−1.

Theorem 24 (Gram-Schmidt). Let {x1, . . . , xp } be a ba-
sis for a nonzero subspace W of Rn . Then we can
construct an orthogonal basis {u1, . . . ,up } via

u1 = x1

u2 = x2 − x2·u1
u1·u1

u1

...
up = xp − xp ·u1

u1·u1
u1 −·· ·− xp ·up−1

up−1·up−1
up−1

and Span{x1, . . . , xk } = Span{u1, . . . ,uk } for 1 ≤ k ≤ p.
In addition, one can obtain orthonormal basis via

normalization, i.e.
{

u1
||u1|| , . . . ,

up

||up ||
}

.

Theorem 25 (QR Factorization). Let A be an m ×n
matrix with linearly independent columns. Then A =
QR where Q = [

u1 · · · un
]

is an m ×n orthogo-
nal matrix for some orthonormal basis {u1, . . . ,un}
for Col A, and R is an n ×n upper triangular invert-
ible matrix with positive entries on its diagonal with
R =QT A.

" If one chooses an arbitrary orthonormal basis of
Col A, QT A may not be have positive diagonal en-
try. If the kth diagonal entry rkk of R is negative, we
can replace both rkk and uk by−rkk and−uk respec-
tively.

Defintion 26. For m×n A and b ∈Rm , a least-squares
solution of Ax = b is x̂ ∈ Rn such that ||b − Ax̂|| ≤
||b − Ax|| for all x ∈Rn .

To find x̂, we solve the normal equation for Ax =
b, AT Ax = AT b which is always consistent. When
AT A is invertible (this is not always the case), we
have

x̂ = (AT A)−1 AT b.

Least-squares solution of Ax = b may not be unique.
However, it is unique in the following situation.
Theorem 27. Let A be an m ×n matrix with linearly
independent columns. Then we have a QR factor-
ization A = QR. Then for each b ∈ Rm , the equation
Ax = b has a unique least-square solution,

x̂ = R−1QT b.
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