CHAPTER 5. EIGENVALUES AND EIGENVECTORS
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Defintion 1. Let Abe an nxn matrix. If there exists a
(real) scalar A and a non-zero vector v € R” such that
Av = Av, then A is called an eigenvalue of A and v is
called an eigenvector of A corresponding to A.

What is the set E of eigenvectors (and zero vec-
tor)? We have Ej = Null(A — A1) because

< Av=Alv
(A-ADHv=0

o Av=Av
o Av-Alv=0 <
< veNull(A-AD

We call E; the eigenspace of A for A. The dimension
of the eigenspace E is called the geometric multi-
plicty (geo. mul.) of A.

Theorem 2. The eigenvalues of a triangular matrix
are the diagonal entries.

veE),

Theorem 3. Let vy,..., v, be eigenvectors of pair-wise
distinct eigenvalues 14,...,1;. Then

{Ul,...,l/r}

is alinearly independent set.

Defintion 4. The polynomial
det(A-AD)

in variable A is called the characteristic polynomial
of A. If A is a root of the characteristic polynomial of
A, then A is an eigenvalue of A. The multiplicity as a
root is called the algebraic multiplicity (alg. mul.).

Defintion 5. Ais similar to B if there is an invertible
matrix P such that A= PBP~L. If Ais similar to B, B
is also similar to A.
Theorem 6. If Aand B are similar, they have the same
characteristic polynomial, hence the same eigenval-
ues with the same multiplicities.
/A\Two matrices with the same eigenvalues do not
have to be similar. For example,

1 0 1 1

[0 | and [0 1]

Defintion 7. A n x n matrix A is diagonalizable if A
is similar to a diagonal matrix, i.e. A= PDP~! for
some invertible matrix P and a diagonal matrix D.

Theorem 8. Let A be n x n matrix.
Ais diagonalizable < Ahas n L.I. eigenvectors

Steps to Diagonalization.
(i) Find the eigenvalue of A.
(ii) Find basis for each eigenspaces.
(iii) Construct P from the vectors in (ii).
(iv) Construct D from the corresponding eigen-
values.

The eigenvector and eigenspace of linear trans-
formation is defined the same way from T'(v) = Av.

Let T:V — V be alinear transformation. Let 98 =
{b1,..., by} be a basis of an n-dim. vector space V.
Define the matrix representation of T with respect
to & by

[Tg = [IT(b1)]x
Then for any x € V, we have
[T(X)] =[Tlnlxls

Theorem 9. Let P be the matrix whose columns are
given by a basis 4. Let T : R” — R" be a linear trans-
formation given by T'(x) = Ax. Then [T]g = P~LAP.
In particular, A= P[T]ggP’l.

(T (bn)) )

Theorem 10. A nxn matrix with n distinct eigenval-
ues is diagonalizable.
Proof. This follows from Theorem 3 and Theorem 8.

Theorem 11. Let Abe nxnmatrix with distinct eigen-

values A1,...,1p.

(a) geo. mul. of A; < alg. mul. of A, for1 <k < p.

(b) A diagonalizable < sum of geo. mul. equals n <
alg. mul. of 1 = geo. mul. of A foralll1 < k< p.

(c) A diagonalizable and % is a basis for E,,, then

%, U ---U By forms an eigenvector basis for R”.
1)

All theory developed so far works well to C”. Namely,
we say that A and v is a complex eigenvalue and a
complex eigenvector of an n x n matrix A if there
exists A € C and v € C” such that Av = Av.

/\(This might not be covered during class) For
a n x n matrix A4, if A is an eigenvalue of A with an
eigenvector v of A. Then A is an eigenvector for the
eigenvalue A where s denotes complex conjugation.
Theorem 12. Let Abe areal 2 x2 matrix with a com-
plex eigenvalue A = a— bi(b # 0) and an asssociated
eigenvector v € C2. Then

-b
o

My denotes set union. The union 9B1U---U%Bp is anew set that
contains all elements of % for 1 < k < p.

a

A=PCP 'withP=[Rev Imv]andC= b
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Defintion 13. For u, v € R”, the dot product (or the
inner product) of  and v is u” v and is written u- v.
T T

Ifu=[w,...,un] and v={v1,...,v,] ,thenu-v=
uvy+--+ Uyy.

Defintion 14. The length ||v|| of a vector is defined
by VUV =1/v?+---+ 5. In particular, ||v|[* = v- v.
For a scalar ¢ € R, we have ||cv|| = |c|||v]|. If||v]] =1,
v is called a unit vector.

Defintion 15. The distance between u and v is de-
fined by dist(u, v) = llu—v|| = Ilv — ull.

Defintion 16. Two vectors v and v are orthogonal if
u-v=0. We sometimes denote itby u L v.

Theorem 17 (Pythagorean). If u L v, then
e+ vl = lul® +[v]]?

Defintion 18. For a subspace W c R”, a vector v is
orthogonal to W if for all w e W, v L w. The set of
all vectos v that are orthogonal to W is called the or-
thogonal complement of W and is denoted by W+.
W+ is a subspace of R".

(Row A)' =Nul A and (Col A" =Nul AT

Defintion 19. The set {u,..., up} of vectors in R”" is
orthogonal set if every pair of distinct vectors are or-
thogonal. An orthogonal basis is a orthogonal set
that is also a basis.

Theorem 20. Let{uy,..., up} be aorthogonal set with
all u; nonzero vectors, then it is linearly indepen-
dent.

Defintion 21. Let W < R" be a subspace with or-
thogonal basis {w;,..., wp} and y € R". The projec-
tion Projy,, y of y onto W is defined by

. “w
y-un +J’P

Proj =—w + wy.
Iwy="," wy-w, "

1°°- U7

Theorem 22. Let W < R" be a subspace of R". Let
y € R"™. Then y can be uniquely written as
y=jJ+z

where 7 € W and z € Wt. In fact, y = Projy,y =
UUTy where U is the matrix whose columns are a
orthonormal basis of W. Furthermore,

(@) ye€ W ifand onlyif y = Projy, y.

(b) 7 is the closest point to y in W in the sense

that|ly—7ll<lly—wl| forall we W.

Theorem 23. A matrix U is orthogonal (i.e. U Ty =
I) if and only if the columns of U form an orthonor-
mal basis of R”. If U is square, U orthogonal if and
onlyif UT = U™

Theorem 24 (Gram-Schmidt). Let{xy,...,x,} beaba-
sis for a nonzero subspace W of R”. Then we can
construct an orthogonal basis {u, ..., up} via

25} = X1
— X2 Uy
U = X2y
Xp Uy Xp-Up-1
= _ P —e PP
L[p - xp up-uy u Up-1-Up-1 p-1

and Span{xy, ..., x¢} = Span{u,...,ui} for1 < k < p.
In addition, one can obtain orthonormal basis via

. . . Uy L{p
normalization, i.e. {_Ilulll"”’ Tyl }

Theorem 25 (QR Factorization). Let Abe an m x n
matrix with linearly independent columns. Then A =
QR where Q = [u; uy] is an m x n orthogo-
nal matrix for some orthonormal basis {u;,..., u;}
for Col A, and R is an n x n upper triangular invert-
ible matrix with positive entries on its diagonal with
R=0QTA.

A\ If one chooses an arbitrary orthonormal basis of
Col A, QT A may not be have positive diagonal en-
try. If the kth diagonal entry i of R is negative, we
canreplace both ryx and uy by —rx and —uy respec-
tively.

Defintion 26. For mxn Aand b € R™, aleast-squares
solution of Ax = b is X € R” such that ||b— AX|| <
||b— Ax]| for all x € R".

To find %, we solve the normal equation for Ax =
b, AT Ax = AT b which is always consistent. When
AT A is invertible (this is not always the case), we
have
£=(ATATATD.

Least-squares solution of Ax = b may not be unique.
However, it is unique in the following situation.
Theorem 27. Let Abe an m x n matrix with linearly
independent columns. Then we have a QR factor-
ization A = QR. Then for each b € R™, the equation
Ax = b has a unique least-square solution,

%=R'Q"p.
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