Keywords: Eigenvectors, Eigenvalues, algebraic multiplicity, geometric multiplicity, Characteristic Polynomial, Similarity, Diagonalization, Matrix Representation, Complex Eigenvalues.

Definition 1. Let *A* be an $n \times n$ matrix. If there exists a (real) scalar λ and a non-zero vector $v \in \mathbb{R}^n$ such that $Av = \lambda v$, then λ is called an **eigenvalue** of *A* and *v* is called an **eigenvector** of *A* corresponding to λ .

What is the set E_{λ} of eigenvectors (and zero vector)? We have $E_{\lambda} = \text{Null}(A - \lambda I)$ because

$$v \in E_{\lambda} \Leftrightarrow Av = \lambda v \Leftrightarrow Av = \lambda Iv$$

$$\Leftrightarrow Av - \lambda Iv = 0 \Leftrightarrow (A - \lambda I)v = 0$$

$$\Leftrightarrow v \in \text{Null}(A - \lambda I)$$

We call E_{λ} the **eigenspace** of *A* for λ . The dimension of the eigenspace E_{λ} is called the **geometric multiplicty** (geo. mul.) of λ .

Theorem 2. The eigenvalues of a triangular matrix are the diagonal entries.

Theorem 3. Let v_1, \ldots, v_r be eigenvectors of pair-wise distinct eigenvalues $\lambda_1, \ldots, \lambda_r$. Then

$$\{v_1, ..., v_r\}$$

is a linearly independent set.

Definition 7. A $n \times n$ matrix A is **diagonalizable** if A is similar to a diagonal matrix, i.e. $A = PDP^{-1}$ for some invertible matrix P and a diagonal matrix D.

Theorem 8. Let *A* be $n \times n$ matrix.

A is diagonalizable \Leftrightarrow A has n L.I. eigenvectors

Steps to Diagonalization.

- (i) Find the eigenvalue of *A*.
- (ii) Find basis for each eigenspaces.
- (iii) Construct *P* from the vectors in (ii).
- (iv) Construct *D* from the corresponding eigenvalues.

The eigenvector and eigenspace of linear transformation is defined the same way from $T(v) = \lambda v$.

Let $T: V \to V$ be a linear transformation. Let $\mathscr{B} = \{b_1, ..., b_n\}$ be a basis of an *n*-dim. vector space *V*. Define the **matrix representation** of *T* with respect to \mathscr{B} by

$$[T]_{\mathscr{B}} = \begin{bmatrix} [T(b_1)]_{\mathscr{B}} & \cdots & [T(b_n)]_{\mathscr{B}} \end{bmatrix}$$

Then for any $x \in V$, we have

 $[T(x)]_{\mathcal{B}} = [T]_{\mathcal{B}}[x]_{\mathcal{B}}$

Theorem 9. Let *P* be the matrix whose columns are given by a basis \mathscr{B} . Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation given by T(x) = Ax. Then $[T]_{\mathscr{B}} = P^{-1}AP$. In particular, $A = P[T]_{\mathscr{B}}P^{-1}$.

Defintion 4. The polynomial

$$\det(A - \lambda I)$$

in variable λ is called the **characteristic polynomial** of *A*. If λ is a root of the characteristic polynomial of *A*, then λ is an eigenvalue of *A*. The multiplicity as a root is called the **algebraic multiplicity** (alg. mul.).

Definiton 5. *A* is **similar** to *B* if there is an invertible matrix *P* such that $A = PBP^{-1}$. If *A* is similar to *B*, *B* is also similar to *A*.

Theorem 6. If *A* and *B* are similar, they have the same characteristic polynomial, hence the same eigenvalues with the same multiplicities.

 $\underline{\wedge}$ Two matrices with the same eigenvalues do not have to be similar. For example,

 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

Theorem 10. A $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

Proof. This follows from Theorem 3 and Theorem 8.

Theorem 11. Let *A* be $n \times n$ matrix with distinct eigenvalues $\lambda_1, \ldots, \lambda_p$.

- (a) geo. mul. of $\lambda_k \leq alg.$ mul. of λ_k for $1 \leq k \leq p$.
- (b) A diagonalizable \Leftrightarrow sum of geo. mul. equals $n \Leftrightarrow$ alg. mul. of λ_k = geo. mul. of λ_k for all $1 \le k \le p$.
- (c) A diagonalizable and \mathscr{B}_k is a basis for E_{λ_k} , then $\mathscr{B}_1 \cup \cdots \cup \mathscr{B}_p$ forms an eigenvector basis for \mathbb{R}^n .

All theory developed so far works well to \mathbb{C}^n . Namely, we say that λ and v is a **complex eigenvalue** and a **complex eigenvector** of an $n \times n$ matrix A if there exists $\lambda \in \mathbb{C}$ and $v \in \mathbb{C}^n$ such that $Av = \lambda v$.

▲(This might not be covered during class) For a *n* × *n* matrix *A*, if *λ* is an eigenvalue of *A* with an eigenvector *v* of *λ*. Then $\overline{\lambda}$ is an eigenvector for the eigenvalue $\overline{\lambda}$ where $\overline{\bullet}$ denotes complex conjugation. **Theorem 12.** Let *A* be a real 2 × 2 matrix with a complex eigenvalue $\lambda = a - bi(b \neq 0)$ and an associated eigenvector $v \in \mathbb{C}^2$. Then

 $A = PCP^{-1}$ with $P = \begin{bmatrix} \operatorname{Re} v & \operatorname{Im} v \end{bmatrix}$ and $C = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$

⁽¹⁾ \cup denotes set union. The union $\mathscr{B}_1 \cup \cdots \cup \mathscr{B}_p$ is a new set that contains all elements of \mathscr{B}_k for $1 \le k \le p$.

Keywords: inner product, dot product, length of a vector, distance between two vectors, orthogonality, orthogonal complement, orthogonal set/basis, orthogonal matrix, orthogonal projection, Gram-Schmidt, QR factorization.

Definition 13. For $u, v \in \mathbb{R}^n$, the **dot product** (or the **inner product**) of u and v is $u^T v$ and is written $u \cdot v$. If $u = [u_1, ..., u_n]^T$ and $v = [v_1, ..., v_n]^T$, then $u \cdot v = u_1 v_1 + \cdots + u_n v_n$.

Definiton 14. The **length** ||v|| of a vector is defined by $\sqrt{v \cdot v} = \sqrt{v_1^2 + \dots + v_n^2}$. In particular, $||v||^2 = v \cdot v$. For a scalar $c \in \mathbb{R}$, we have ||cv|| = |c|||v||. If ||v|| = 1, v is called a **unit vector**.

Definiton 15. The **distance** between *u* and *v* is defined by dist(u, v) = ||u - v|| = ||v - u||.

Definition 19. The set $\{u_1, \ldots, u_p\}$ of vectors in \mathbb{R}^n is **orthogonal set** if every pair of distinct vectors are orthogonal. An **orthogonal basis** is a orthogonal set that is also a basis.

Theorem 20. Let $\{u_1, ..., u_p\}$ be a orthogonal set with all u_i nonzero vectors, then it is linearly independent.

Definition 21. Let $W \subset \mathbb{R}^n$ be a subspace with orthogonal basis $\{w_1, ..., w_p\}$ and $y \in \mathbb{R}^n$. The **projection** Proj_{*W*} *y* of *y* onto *W* is defined by

$$\operatorname{Proj}_W y = \frac{y \cdot w_1}{w_1 \cdots w_1} w_1 + \cdots + \frac{y \cdot w_p}{w_p \cdot w_p} w_p.$$

Theorem 24 (Gram-Schmidt). Let $\{x_1, ..., x_p\}$ be a basis for a nonzero subspace W of \mathbb{R}^n . Then we can construct an orthogonal basis $\{u_1, ..., u_p\}$ via

$$u_{1} = x_{1}$$

$$u_{2} = x_{2} - \frac{x_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}$$

$$\vdots$$

$$u_{p} = x_{p} - \frac{x_{p} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} - \dots - \frac{x_{p} \cdot u_{p-1}}{u_{p-1} \cdot u_{p-1}} u_{p-1}$$

and Span{ $x_1, ..., x_k$ } = Span{ $u_1, ..., u_k$ } for $1 \le k \le p$. In addition, one can obtain orthonormal basis via normalization, i.e. $\left\{\frac{u_1}{||u_1||}, ..., \frac{u_p}{||u_p||}\right\}$.

Definition 26. For $m \times n A$ and $b \in \mathbb{R}^m$, a **least-squares** solution of Ax = b is $\hat{x} \in \mathbb{R}^n$ such that $||b - A\hat{x}|| \le ||b - Ax||$ for all $x \in \mathbb{R}^n$.

To find \hat{x} , we solve the *normal equation* for Ax = b, $A^T Ax = A^T b$ which is always consistent. When $A^T A$ is invertible (this is not always the case), we have

$$\hat{x} = (A^T A)^{-1} A^T b.$$

Definiton 16. Two vectors *u* and *v* are **orthogonal** if $u \cdot v = 0$. We sometimes denote it by $u \perp v$.

Theorem 17 (Pythagorean). If
$$u \perp v$$
, then

$$|u + v||^2 = ||u||^2 + ||v||^2$$

Definiton 18. For a subspace $W \subset \mathbb{R}^n$, a vector v is **orthogonal** to W if for all $w \in W$, $v \perp w$. The set of all vectos v that are orthogonal to W is called the **orthogonal complement** of W and is denoted by W^{\perp} . W^{\perp} is a subspace of \mathbb{R}^n .

$$(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$$
 and $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^{T}$

Theorem 22. Let $W \subset \mathbb{R}^n$ be a subspace of \mathbb{R}^n . Let $y \in \mathbb{R}^n$. Then *y* can be uniquely written as

$$y = \hat{y} + z$$

where $\hat{y} \in W$ and $z \in W^{\perp}$. In fact, $\hat{y} = \operatorname{Proj}_{W} y = UU^{T} y$ where *U* is the matrix whose columns are a orthonormal basis of *W*. Furthermore,

- (a) $y \in W$ if and only if $y = \operatorname{Proj}_W y$.
- (b) \hat{y} is the closest point to y in W in the sense that $||y \hat{y}|| < ||y w||$ for all $w \in W$.

Theorem 23. A matrix *U* is **orthogonal** (i.e. $U^T U = I$) if and only if the columns of *U* form an orthonormal basis of \mathbb{R}^n . If *U* is square, *U* orthogonal if and only if $U^T = U^{-1}$.

Theorem 25 (QR Factorization). Let *A* be an $m \times n$ matrix with linearly independent columns. Then A = QR where $Q = \begin{bmatrix} u_1 & \cdots & u_n \end{bmatrix}$ is an $m \times n$ orthogonal matrix for some orthonormal basis $\{u_1, \ldots, u_n\}$ for Col *A*, and *R* is an $n \times n$ upper triangular invertible matrix with positive entries on its diagonal with $R = Q^T A$.

 \triangle If one chooses an arbitrary orthonormal basis of Col *A*, $Q^T A$ may not be have positive diagonal entry. If the *k*th diagonal entry r_{kk} of *R* is negative, we can replace both r_{kk} and u_k by $-r_{kk}$ and $-u_k$ respectively.

Least-squares solution of Ax = b may not be unique. However, it is unique in the following situation. **Theorem 27.** Let *A* be an $m \times n$ matrix with linearly independent columns. Then we have a QR factorization A = QR. Then for each $b \in \mathbb{R}^m$, the equation Ax = b has a unique least-square solution,

$$\hat{x} = R^{-1}Q^T b.$$