CLOSED FORMULA OF THE FIBONACCI SEQUENCE

The Fibonacci sequence is defined recursively as

$$
a_{0}=0, a_{1}=1, \quad a_{2}=1, \quad \text { and } a_{n}=a_{n-1}+a_{n-2} \text { for } n \geq 2
$$

Therefore, $a_{3}=a_{2}+a_{1}=2, a_{4}=a_{3}+a_{2}=3$, and so on. As of now, one must compute all a_{1}, \ldots, a_{n-1} to compute a_{n}. However, with help of diagonalization of matrices, one can find a closed formula for Fibonacci sequence. In order to to land in the realm of linear algebra, we wish to compute a_{n} via some matrix multiplication. To do this, let us define a vector

$$
v_{n}=\left[\begin{array}{c}
a_{n} \\
a_{n+1}
\end{array}\right]
$$

for $n \geq 0$. Then we want to find a 2×2-matrix A such that

$$
v_{n+1}=A v_{n} .
$$

Indeed,

$$
v_{n+1}=\left[\begin{array}{l}
a_{n+1} \\
a_{n+2}
\end{array}\right]=\left[\begin{array}{c}
a_{n+1} \\
a_{n+1}+a_{n}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
a_{n} \\
a_{n+1}
\end{array}\right] \Rightarrow A=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] .
$$

Then we get the equality

$$
v_{n}=A^{n} v_{0}=A^{n}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\text { second column of } A^{n} .
$$

In particular, the $(1,2)$-entry of A^{n} is equal to a_{n}. Hence our goal is to efficiently compute A^{n}. This is where diagaonalization comes in handy. To diagonalize A, we start by computing its characteristic polynomial of A,

$$
\operatorname{det}\left[\begin{array}{rr}
-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right]=\lambda^{2}-\lambda-1
$$

By the quadratic formula, we see that the eigenvalues are

$$
\lambda=\frac{1 \pm \sqrt{5}}{2} .
$$

which are distinct. Since A is 2×2-matrix, it follows that A is diagonalizable. We denote by $\lambda_{1}=\frac{1-\sqrt{5}}{2}$ and $\lambda_{2}=\frac{1+\sqrt{5}}{2}$. It is useful to observe that

$$
\lambda_{1}+\lambda_{2}=1 \text { and } \lambda_{1} \lambda_{2}=-1
$$

as well as $1-\lambda_{1}=\lambda_{2}$ and $1-\lambda_{2}=\lambda_{1}$.
Next we find eigenvectors for λ_{1} and λ_{2}.

$$
A-\lambda_{1} I=\left[\begin{array}{rr}
-\lambda_{1} & 1 \\
1 & 1-\lambda_{1}
\end{array}\right]=\left[\begin{array}{rr}
-\lambda_{1} & 1 \\
1 & \lambda_{2}
\end{array}\right]
$$

Observe that

$$
\lambda_{2}\left[\begin{array}{ll}
-\lambda_{1} & 1
\end{array}\right]=\left[\begin{array}{ll}
-\lambda_{1} \lambda_{2} & \lambda_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & \lambda_{2}
\end{array}\right]
$$

Therefore,

$$
A-\lambda_{1} I=\left[\begin{array}{rr}
\lambda_{2} & 1 \\
1 & -\lambda_{1}
\end{array}\right] \rightarrow\left[\begin{array}{rr}
-\lambda_{1} & 1 \\
0 & 0
\end{array}\right]
$$

We thus can conclude that

$$
\begin{aligned}
& {\left[\begin{array}{r}
1 \\
\lambda_{1}
\end{array}\right] \quad \text { is an eigenvector for } \lambda_{1}} \\
& {\left[\begin{array}{r}
1 \\
\lambda_{2}
\end{array}\right] \quad \text { is an eigenvector for } \lambda_{2} \quad \text { by the same process after interchanging } \lambda_{1} \text { and } \lambda_{2}}
\end{aligned}
$$

Let P be the matrix formed by these eigenvectors, i.e.

$$
P=\left[\begin{array}{rr}
1 & 1 \\
\lambda_{1} & \lambda_{2}
\end{array}\right]
$$

Then

$$
\operatorname{det}(P)=\lambda_{2}-\lambda_{1}=\frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2}=\sqrt{5}
$$

In particular,

$$
P^{-1}=\frac{1}{\sqrt{5}}\left[\begin{array}{rr}
\lambda_{2} & -1 \\
-\lambda_{1} & 1
\end{array}\right]
$$

Then the diagonalization of A is given by

$$
A=\left[\begin{array}{rr}
1 & 1 \\
\lambda_{1} & \lambda_{2}
\end{array}\right]\left[\begin{array}{rr}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] \frac{1}{\sqrt{5}}\left[\begin{array}{rr}
\lambda_{2} & -1 \\
-\lambda_{1} & 1
\end{array}\right]
$$

The n th-power of A is

$$
A^{n}=\left[\begin{array}{rr}
1 & 1 \\
\lambda_{1} & \lambda_{2}
\end{array}\right]\left[\begin{array}{rr}
\lambda_{1}^{n} & 0 \\
0 & \lambda_{2}^{n}
\end{array}\right] \frac{1}{\sqrt{5}}\left[\begin{array}{rr}
\lambda_{2} & -1 \\
-\lambda_{1} & 1
\end{array}\right]=\frac{1}{\sqrt{5}}\left[\begin{array}{rr}
\lambda_{1}^{n} & \lambda_{2}^{n} \\
\lambda_{1}^{n+1} & \lambda_{2}^{n+1}
\end{array}\right]\left[\begin{array}{rr}
\lambda_{2} & -1 \\
-\lambda_{1} & 1
\end{array}\right]
$$

Then the (1,2)-entry of A^{n} is

$$
a_{n}=\frac{1}{\sqrt{5}}\left(\lambda_{2}^{n}-\lambda_{1}^{n}\right)=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

