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CHAPTER 0

Introduction

This is a supplementary note for MATH240, taught at the University of Maryland during Spring
2024, based on the textbook written by Lay, Lay, and Mcdonald. The notes will be updated as the
semester proceeds. The main purpose of this note is to summarize and supplement the textbook with
an emphasis on the theoretical aspect. While some computational examples may be included, it is
recommended to refer to the textbooks for detailed examples.

This note is not the definitive study guide for the course. To excel in this course, or college-level
math in general, here are some tips:

(i) Understand the definitions (highlighted in red in this note) and have an example for each
definitions. It greatly helps if you also know counter-examples.

(ii) Solve and understand all homework problems and worksheet problems provided during
discussion sections.

(iii) Don’t hesitate to ask for help when you get stuck. You can always work with your peers or
come to office hours.

0.1. Notations

In this course, a number will means a real number or a complex number. We denote by R the set
of real numbers and C the set of complex numbers. Instead of saying a is a real number, we can write
a ∈ R. Similarly, the phrase a is a complex number can be replaced by a ∈ C.

A proposition will always mean a mathematical statement that is true. If a proposition is impor-
tant, we will call them a theorem instead.

0.2. Short Introduction

Linear algebra is a branch of mathematics concerning solving linear equations and matrices. An
efficient way of studying a collection of linear equations was to expressing it as a matrix, consequently
leading to the development of matrix algebras.

Though started out as a pure mathematics, linear algebra has evolved to find myriad real-life ap-
plications. Search engine ranking (Section 10.2), optimization problems (Chapter 9), error correcting
codes, machine learning (Section 6.6), and quantum computing, and more are some of the examples.
The essence lies in the recongnition that data can often be represented as arrays of numbers, i.e.
matrices.
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CHAPTER 1

Linear Equations in Linear Algebra

In this chapter, we will learn about collections of degree-one equations with multiple variables
called linear systems. {

linear systems
}
↔

{
matrices

}
For a linear system, we can associate a matrix called an augmented matrix which contains all im-

portant data of a system. (Section 1.1) We will perform certain matrix operations to turn augmented
matrix into a simpler form called the (reduced) row echelon form. It turns out that the row reduction
algorithm, or changing a matrix into its reduced row echelon form, gives an explicit description of the
solution set of a linear system. (Section 1.2) Then we introduce vectors in real Eucliean space Rn and
express linear systems as a matrix equation of the form Ax = b. (Section 1.3 and 1.4) Next, we will
use the vector notations to give explicit and geometric description of solution sets. (Section 1.5)

1.1. Systems of Linear Equations

Definition 1.1.1. A linear equation is an equation (of variables x1, . . . , xn) of the form

a1x1 + a2x2 + · · ·+ anxn = b

where a1, . . . , an, b are (real or complex) numbers. The numbers a1, . . . , an in front of the variables,
are called coefficients.

Definition 1.1.2.

(i) A collection of one or more linear equations

L :


a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
...

...
am1x1 + am2x2 + · · ·+ amnxn = bm

(1)

is called a linear system (or a system of linear equations). In this note, we will sometimes
denote systems of linear equations by caligraphic letters L.

(ii) A solution of a linear system L is a list (s1, . . . , sn) of (real or complex) numbers that makes
all the equations true when substituted for x1, . . . , xn. The set of all solutions of a linear
system is called a solution set. Two linear systems are equivalent if they have the same
solution set.

Proposition 1.1.3. A system of linear equations has either
no solutiona) exactly one solutionb) infinitely many solutions.c)

Definition 1.1.4. A system of linear equations is said to be consistent if it has a solution and is said
to be inconsistent if it has no solution.

There is a more compact way of writing all the essential informations of linear systems.

Definition 1.1.5. A rectangular array A of numbers

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


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is called a matrix. If the number of rows of A is m and the number of columns of A of n, then m× n
is called the size of A and we call A an m× n matrix.

Definition 1.1.6. Given a system of equations L as in equation (1), we can associate two matrices.

AL =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 A+
L =


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bn


Here AL is called the coefficient matrix of the system L, and A+

L is called the augmented matrix of
the system L. We will often simply write A instead of AL or A+

L.

How do you solve a linear system (in other words, how do you find the solution set)? The rough
idea is to replace one system with an equivalent system that is easier to solve. The following are
three basic operations to simplify a linear system and their matrix counterparts. One can show that
elementary row operations do not change solutions sets (see Problem 1.1 or Proposition 1.1.9).

Definition 1.1.7. The following operations on linear systems or matrices are called elementary row
operations.

(1) replace one equation by the sum of itself
and a multiple of another equation,

(2) interchange two equations,

(3) multiply all the terms in an equation by
a nonzero constants

(1) replace one row by the sum of itself and
a multiple of another row,

(2) interchange two rows,

(3) multiply all the entries in a row by a
nonzero constants

For a step-by-step illustration of solving a linear system using elementary row operations, see
Example 1 of section 1.1. Similar methods in Example 3 of section 1.1 can be used to show that a
linear system is inconsistent.

Definition 1.1.8. Two matrices are called row equivalent if there is a sequence of elementary row
operations that transforms one matrix into the other.

The following proposition explains why the augmented matrix of a linear system contains all the
essential information of a linear system. In other words, we can work with matrices instead of linear
systems to solve the systems. To see why the proposition is true, see Problem 1.1.

Proposition 1.1.9. Two linear systems have the same solution set if and only if the augmented matrices
of these two linear systems are row equivalent.

1.2. Row Reduction and Echelon Forms

In Example 1 of section 1.1, we have the following row equivalent matrices

A1 =

1 −2 1 0
0 2 −8 8
5 0 −5 10

 7→ A2 =

1 −2 1 0
0 1 −4 4
0 0 30 −30

 7→ A3 =

1 0 0 1
0 1 0 0
0 0 1 −1

 . (2)

The zero entries on the lower-left blocks of A2 and A3 look like a staircase. Using the French word
échelon which means steplike, we make the following definition.

Definition 1.2.1.

(a) The leftmost nonzero entry is called the leading entry.

(b) A matrix is in row echelon form if

(i) All rows with at least one nonzero entry is above any rows of all zeroes.

(ii) All entries in a column below a leading entry are zeroes.

(iii) All leading entry is on the right of the leading entry of every row above.



(c) A matrix is in row reduced echelon form if

(i) All leading entry is 1.

(ii) All columns containing a leading entry has zeores in all its other entries.

Though there are also column echelon form and column reduced echelon form, we simply say
echelon form and reduced echelon form in this course. The following definitions are made mainly for
bookkeeping purposes.

Definition 1.2.2.

(a) A matrix that is in echelon form is called a echelon matrix. Similarly, a matrix that is in
reduced echelon form is called a reduced echelon matrix.

(b) A echelon matrix U that is row equivalent to a matrix A is called an echelon form of A.
Similarly, one can define a reduced echelon form of A.

(c) A matrix is said to be row reduced into another matrix if it is transformed by elementary
row operations. You may regard it as a verb form of row equivalent.

Example 1.2.3. Consider the three matrices A1, A2, and A3 in (2) above. The matrix A2 is a echelon
matrix, and A3 is a reduced echelon matrix. Since both A2 and A3 are row equivalent to A1, A2 is a
echelon form of A1, and A3 is a reduced echelon form of A2.

Note that given a nonzero matrix A, one can have (infinitely) many echelon forms of A. To see
this, given a echelon form of A, simply multiply all the entries by a nonzero constants (ER3) to obtain
another echleon form of A. However,

Theorem 1.2.4 (Uniqueness of the Reduced Echelon Form). Each matrix is row equivalent to one and
only one reduced echelon matrix.

The proof is given in Appendix A at the end of the textbook.

Definition 1.2.5. A pivot position in A is the location in A that corresponds to the leading entry that
is 1 in the reduced echelon form of A. A column of A that contains a pivot position is called a pivot
column. A pivot is a nonzero number in a pivot position that may be used to create zeros via row
operations.

Finding pivots are explained in Example 2 of Section 1.2. Note that pivots are not the entries of A
in the pivot positions. Next Example 3 of Section 1.2 shows the row reduction algorithm to transform
any matrix A into its (reduced) echelon form.

Definition 1.2.6. Let L be a linear system of m equations with n variables and A be its associated
augmented matrix. Then let U be the reduced echelon form of A. If the ith column of the augmented
matrix is a pivot column, then we say that the variable xi is a basic variable. On the other hands, if
the ith column is not a pivot column, we say that xi is a free variable. This means that xis can have
any values, and the basic variables are determined by the free variables.

1.3. Vector Equations

A vector is an ordered list of numbers. In this section, we will focus only on column vectors, i.e. a
matrix with one column. For example,

v1 =

 3
7

−2

 , v2 =

[
π√
2

]
, v3 =


1
2
...

20


are all columns vectors. The set of vectors with n entries are denoted by Rn. Therefore, v1 ∈ R3,
v2 ∈ R2, and v3 ∈ R20. Note that two vectors are equal to each other if their entries are the same. In

particular,
[
1
2

]
̸=

[
2
1

]
.



Given two vectors

u =


u1

u2

...
un

 , v =


v1
v2

...
vn


and a number (or a scalar) c ∈ R, we can define the following operations.

(sum)

u+ v =


u1 + v1
u2 + v2

...
un + vn


a) (scalar multiplication)

cu =


cu1

cu2

...
cun


b)

The column vectors in Rn have a geometric interpretation. We view the vector
u1

u2

...
un


as the point (u1, . . . , un) in the n-dimensional space also denoted Rn. So we can view the column
vectors in R2 as a point in the x1x2-plane (similar to xy-plane) as below.

x1

x2

•
(4, 3)

x1

x2

•
(4, 3)

Then vector sums u + v is geometrically the fourth vertex of the parallelogram formed by u and v.
This is called the parallelogram rule for addition.

x1

x2

•

•
•

(2,1)

(1,3)

(3,4)

The vector sum and scalar multiplication satisfies a similar algebraic properties as real or complex
numbers do.

Proposition 1.3.1 (Algebraic Properties of Rn). For all u,v,w ∈ Rn, and all scalars c, d ∈ R,
u+ v = v + ua) (u+ v) +w = u+ (v +w)b)
u+ 0 = 0+ u = uc) u+ (−u) = −u+ u = 0

where −u = (−1)u

d)

c(u+ v) = cu+ cve) (c+ d)u = cu+ cvf)
c(du) = (cd)ug) 1u = u.h)

Definition 1.3.2. Let v1,v2, . . . ,vp ∈ Rn and c1, . . . , cp ∈ R. Then the vector

y = c1v1 + · · ·+ cpvp



is called a linear combination of v1, . . . ,vp with weights c1, . . . , cp. The set of all linear combinations
of v1, . . . ,vp is denoted by Span{v1, . . . ,vp} and is called the subset of Rn spanned (or generated) by
v1, . . . ,vp.

With this new language, we now have three ways to describe linear equations.{
Augmented Matrix

}
↔

{
Linear Systems

}
↔

{
Vector Equations

}
To see this, let x1, . . . , xn be variables. We have{

Linear Systems
}

↔
{

Vector Equations
}

a11x1 + a12x2 + . . .+ a1nxn = b1
a21x1 + a22x2 + . . .+ a2nxn = b2

...
... =

...
am1x1 + am2x2 + . . .+ amnxn = bm

↔ a1x1 + a2x2 + · · ·+ anxn = b

a1 =


a11
a21

...
am1

 , . . . ,an =


a1n
a2n

...
amn

 ,b =


b1
b2

...
bm


Therefore, the linear system has a solution if and only if b is a linear combination of a1, . . . ,an.

1.4. The Matrix Equation Ax = b

{
Vector Equations

}
↔

{
Matrix Equation

}
a1x1 + a2x2 + · · ·+ anxn = b ↔ Ax = b

a1 =


a11
a21

...
am1

 , . . . ,an =


a1n
a2n

...
amn

 ,b =


b1
b2

...
bm

 ↔ A =
[
a1 a2 · · · an

]
,b =


b1
b2

...
bm


Theorem 1.4.1 (Theorem 4 on page 39). Let A be an m× n matrix. Then the following statements are
logically equivalent. That is, for a particular A, either they are all true statements or they are all false.

a. For each b ∈ Rm, the equation Ax = b has a solution.

b. Each b in Rm is a linear combination of the columns of A.

c. The columns of A span Rm.

d. A has a pivot position in every row.

Proposition 1.4.2 (Theorem 5 on page 41). If A is m × n matrix, u and v are vectors in Rn, and c is
a scalar, then:

a. A(u+ v) = Au+Av;

b. A(cu) = c(Au).

1.5. Solution Sets of Linear Systems

Definition 1.5.1. A homogeneous linear system is a linear system which can be written in the form
Ax = 0. Then the zero vector 0 is always a solution to the linear system Ax = 0, and will be called
the trivial solution. For a homogeneous linear system, a solution that is nonzero (i.e. not trivial) is
called a nontrivial solution.



Proposition 1.5.2. The homogeneous equation Ax = 0 has a nontrivial solution if and only if the
equation has at least one free variable.

Definition 1.5.3. A solution is in parametric vector form if it is of the form

x = s1v1 + · · ·+ snvn.

General solutions of a homogeneous linear system Ax = 0 can be written in parametric vector form.
For arbitrary linear system Ax = 0, general solutions of the form

x = p + s1v1 + · · ·+ snvn

will be still called in parametric vector form.

To write the general solutions of Ax = 0 in parametric vector form, write the general solutions as
in 1.2. For example 

x1 = 3 + 7x3 + 6x4

x2 = 1− 2x3

x3 is free
x4 is free
x5 = x4

↔ x =


3 + 7x3 + 6x4

1− 2x3

x3

x4

x4


Then we can separate each free variables from the general solution as follows

x =


3
1
0
0
0


︸︷︷︸
=p

+x3


7

−2
1
0
0


︸ ︷︷ ︸
=v1

+x4


6
0
0
1
1


︸︷︷︸
=v2

Theorem 1.5.4. Suppose the equation Ax = b is consistent for some given b, and let p be a solution.
Then the solution set of Ax = b is the set of all vectors of the form w = p+ vh, where vh is any solution
of the homogeneous equation Ax = 0.

1.7. Linear Independence

Definition 1.7.1. The set of vectors {v1, . . . ,vp} be a set in Rn is linearly independent if the vector
equation

x1v1 + · · ·+ xpvp = 0

has only the trivial solution. The set {v1, . . . ,vp} is linearly dependent if there exists weights c1, . . . , cp,
not all zero, such that

c1v1 + · · ·+ cpvp = 0. (3)
The equation above is (3) is called linear dependence relation.

Proposition 1.7.2. Each linear dependence relation among the columns of A corresponds to a nontrivial
solution of Ax = 0. Therefore, the columns of a matrix A are linearly indpendent if and only if the
equation Ax = 0 has only the trivial solution.

Proposition 1.7.3.

(a) The set {v1, . . . ,vp} is linearly dependent if one of them is a zero vector.

(b) The set {v} is linearly independent if v ̸= 0 and is linearly dependent if v = 0.

(c) The set {v1,v2} is linearly dependent if and only if v1 and v2 are scalar multiple of each other.

Theorem 1.7.4 (Theorem 7 and 8 on page 62 and 63).

(a) Let S = {v1, . . . ,vp} be a set of vectors. Then S is linearly dependent if and only if at least one
of the vectors in S is a linear combination of the others. To be precise, v1 ̸= 0, and there exists
vj such that vj is a linear combination of v1, . . . ,vj−1.

(b) Let S = {v1, . . . ,vp} be a vectors in Rn. If p > n, then S is linearly dependent.



1.8. Introduction to Linear Transformations

Definition 1.8.1.

(a) Let A and B be a set. Then a function f : A → B is a rule that assigns to element a ∈ A
to a unique element f(a) ∈ B. To be more precise, every element a ∈ A must be sent to an
element in B and to only one element. We use the notation a 7→ f(a). The set A is called
the domain, and B is called the codomain. The element f(a) is called the image of a under
f . The set of all images f(a) is called the range of f .

(b) A function of the form T : Rn → Rm is often called transformation from Rn to Rm.

A transformation associated to matrix multiplication A is called a matrix transformation and is
defined by x 7→ Ax. If a1, . . . ,an are column vectors of A, then the image Ax of x

Ax = x1a1 + · · ·+ xnan

is a linear combination of a1, . . . ,an. In other words, the range of T is Span(a1, . . . ,an).

Definition 1.8.2. A transformation T : Rn → Rm is linear if for all u,v ∈ Rn and c ∈ R

(a) T (u+ v) = T (u) + T (v),

(b) T (cu) = cT (u).

By Proposition 1.4.2, matrix transformations are linear transformations. Let T : Rn → Rm be a
linear transformation, then

(a) T (0) = 0

(b)
T (c1v1 + · · ·+ cpvp) = c1T (v1) + · · ·+ cpT (vp)

for all v1, . . . ,vp ∈ Rn and c1, . . . , cp ∈ R.

Example 1.8.3. Let Tr : Rn → Rn be a linear transformation defined by x 7→ rx for r ∈ R. Then Tr is
called a dilation since it stretches or contracts the length of the vector and perserves its direction. If r =
1, then T1(x) = x is called the identity transformation. A dilation is, in fact, a matrix multiplication.
Let

Ar =


r 0 · · · 0
0 r · · · 0
...

...
. . .

...
0 0 · · · r


Then Tr(x) = Arx. If r = 1, there is a special name for A1 = In and is called the n×n identity matrix.

1.9. The Matrix of a Linear Transformation

In fact, we can show that every linear transformation is actually a matrix transformation.

Theorem 1.9.1. Let T : Rn → Rm be a linear transformation. Then there exists a unique matrix A such
that

T (x) = Ax

for all x in Rn. In fact, A is the m× n matrix whose jth column is the vector T (ej), where ej is the jth
column of the identity matrix in Rn:

A =
[
T (e1) · · · T (en)

]
The matrix A is called the standard matrix for the linear transformation T .

Example 1.9.2. The transformation Tθ : R2 → R2 where T (x) is the rotation of x by θ radian
counterclockwise is a linear transformation. Then one can show that the standard matrix is

Aθ =

[
cos θ − sin θ
sin θ cos θ

]
Definition 1.9.3.



(a) A mapping T : Rn → Rm is said to be onto Rm if each b in Rm is the image of at least one
x in Rn. In other words, for every b in Rm, there exists x in Rn such that T (x) = b.

(b) A mapping T : Rn → Rm is said to be one-to-one if each b in Rm is the image of at most
one x in Rn. In other words, if T (x) = T (y), then x = y.

Theorem 1.9.4. Let T : Rn → Rm be a linear transformation and A be its standard matrix.

(a) T is one-to-one if and only if T (x) = 0 implies x = 0.

(b) T is onto if and only if the columns of A span Rm.

(c) T is one-to-one if and only if the columns of A are linearly independent.

Appendix: Extra Theoretical Problems

PROBLEM 1.1. Let L = {L1, . . . , Lm} be a linear system where each Li : ai1x1 + · · ·+ ainxn = bi
is a linear equation for i = 1, . . . ,m. Let Si ⊂ Rn be the solution set of Li. Then, by definition, the
solution set SL of L is the intersection

SL = S1 ∩ · · · ∩ Sm

of all Si for i = 1, . . . ,m. Prove that the new linear system L′ after a sequence of elementary row
operations (ER1) - (ER3) in Definition 1.1.7 have the same solution set as L.
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