CHAPTER 2. MATRIX ALGEBRA
Keywords: Matrix multiplication, transpose of a matrix A7, inverse matrix A~!

@) A [by ba] = [Aby Ab,,]

.. 1 d —b
Al =

(i) ad — bc {—C aJ

for 2 x 2 Awith ad —bc #0

i) [A | 1] = [T | A7]

for any square matrix A

(iv) (AB)T = BTAT
for any matrices A, B

) (AB)"1=B~147!
for invertible matrices A, B

(Vi) (A—l)T — (AT)—l
for an invertible matrix A

Theorem 1. An n x n matrix A is invertible if and only if A is row equivalent to I,,.

Theorem 2. (Invertible Matrix Theorem) For an n x n matrix A, (a)-(l) are all equivalent

(i) A has n pivot (columns) < (d) < (e) & ()

(ii) A has n pivot (rows) < (g) & (h) < (i)

CHAPTER 3. DETERMINANTS
Keywords: Determinants, Cofactor Expansion across a row or a column, relationship between row
operations and determinants, Cramer’s Rule, Areas and volumes as determinants.

Defintion 3. Let A be an n x n-matrix.

(a) The submatrix A;; is an (n — 1) x (n — 1)-
matrix obtained from A by deleting ith row
and jth column.

(b) determinant of A is recursively defined as

ar1 det Aj1—ajpdet Ajg+-- -+(—1)1+”a1n det Ay,

Defintion 4. The (4, j)-cofactor of A is
Cij = (1) det A;;
cofactor expansion across row i
det A =0a;1Ci1+ -+ ainCin
cofactor expansion down column j
det A =ay;C1j + -+ an;Cpy

Theorem 5. If A is a triangular matrix, then det A
is the product of the entries on the diagonal of A.

Theorem 6. A square matrix A is invertible if and
only if det A # 0.

Theorem 7. det A = det A” and
det(AB) = (det A)(det B)

(a) det B = det A if B is obtained by adding
a multiple of another row.

(b) If B is obtained by interchanging two rows,
then det B = — det A.

(c) If B is obtained by multipying k to a row,
det B = kdet A.

Cramer’s Rule Let A be invertible n x n-matrix
and b € R™. Then the ith entry z; of the unique
solution is given by

‘T detA
where A4;(b) = [a1 -+ b an.

Let A be an invertible n x n matrix. Then ()
1

AL made
Cn Cxn Cn1
1 |Ci2 Ca Ch2
T odetA | 1 :
Cin Cop, Chn

Determinant and Volumes

(a) (Parallelogram) Let v;,vy € R2. Then the
area of the parallelogram formed by v; and
vy is det A where A = [v1  v2].

(b) (Parallelopiped) Let vq,vo,v3 € R3. Then
the volume of the parallelopiped formed by
v1,v2,v3 is det A where A = [v1 vy wv3].

(@) T : R2 — R? be a linear transformation
with standard matrix A. If S is a region in
R? with finite area. Then

area of T(S) = | det A| - area of S
(b) T : R® — R?® be a linear transformation

with standard matrix A. If S is a region in
R3 with finite volume. Then

volume of T'(S) = | det A| - volume of S

(The (i, j)-entry of A= is Cj; divided by det 4, NOT C;;.



CHAPTER 4: VECTOR SPACES
Keywords: vector space, subspace, basis, null, column, and row spaces, dimension, coordinate vec-
tors, change-of-coordinate matrix, rank-nullity theorem.

Defintion 8. A vector space is a nonempty set V'
of objects called vectors with two operations ad-
dition and mutlipliaction by scalars (real numbers)
with ten properties in pg. 202-203.

Defintion 9. A subspace of a vector space V is a
subset W of V such that (i) 0 € W, (ii) is closed
under addition, and (iii) is closed under scalar
multiplication.

Defintion 10. A linear transformation7 : V —
W is a function such that T'(uv 4+ v) = T'(u) + T'(v)
and T'(cu) = ¢T'(u).

Example 11. The set R™ of column vectors with
n entries and the set P,, of polynomials of degree
at most n are vector spaces.®Also, a subspace of
a vector space is a vector space.

Example 12. Let vq,..
Span{vy, ..., v} = {crv1 + - + vy | ¢ € R}

of {vy,...,v,} is a subspace of V. This is called
the subspace of V' generated by {vq,...,v,}.

.,vp € V. Then the span

D The addition and scalar multiplications of R" and P,, are
defined differently.

Defintion 13. A set of vectors {vy,...,v,}in V'is
linearly independent if the linear dependence
relation c;v; + --- 4 ¢pv, = 0 has only trivial so-
lution.

Theorem 14. {vq,...,v,} with v; # 0 is linearly
dependent if and only if some v; (j > 1) is a linear
combination of vy, ..., v;_1.
Defintion 15. A indexed set &% of vectors in a vec-
tor space V is called a basis if (i) &% is linearly
independent and (ii) Span & = V.

Defintion 16. If a vector space V is spanned by a
finite set, then V is said to be finite-dimensional
and the number of vectors in a basis is called a
dimension of V. ®

(A basis of a vector space is not unique, but they all have the
same number of vectors by Theorem 18.

Theorem 17. (Spanning Set Theorem) Let S =
{v1,...,v,} be asubset of V and let W = Span S.
Then (i) if v, € S is a linear combination of the re-
maining vectors in S, then the set {vy,..., v7, ...
formed by removing vy, from S still spans W and
(ii) if S # {0}, then a subset of S is a basis of W.
Theorem 18. (a) If a vector space V' has a basis
% with n vectors, then any set in V' containing
more than n vectors must be linearly dependent.
Also, every basis of V' must consist of exactly n
vectors. (b) Every vector can be written uniquely
as a linear combinations of vectors in .
Theorem 19. Let W be a subspace of a finite-
dimensional vector space. Then dim W < dim V.
Theorem 20. For dim V = n, (i) any linearly in-
dependent set of V' with n-elements or (ii) any
spanning set of V' with n-elements is a basis.

Let A be a m x n-matrix. Write A = [a
let T1,.-

an] where a;s are the column vectors of A. Also,
.,Tm be its row vectors. Let T : R — R™ be the linear transformation defined by A.

Subspace A basis™®

Dimension

Nul A= {z e R" | Az =0}
= Ker(T') subspace of R™

3 is the set of vectors appearing in the
general solution in parametric vector form

Col A = Span {a1,...,a,}
= Range(T") subspace of R™

% = { pivot columns of A }

Row A = Span {ry,...,r}
is a subspace of R™

A is the set of nonzero row vectors of
an echelon form B of A

Row A =Row B
A — B row. eq.

Theorem 21 (Rank-Nullity).

rank A 4+ nullity A
= # of cols. of A

Defintion 22. The standard ba-
sis is the set {e1,...,e,} in R
where e; is the vector whose en-
tries are all zero except 1 at the
ith entry.

be a basis.

[2]%

ative to A.

Defintion 23. 3 = {by,...

given x = c1b1 + -+ + ¢cpby, is
called coordinate vector of z rel-

,bn} Defintion24. % = {b1,...,b,},
€ ={c1,...,c,} be bases of V.
“l = [l b
P = llle [bn]]
C;L is called the change-of-coordinates

matrix from % to €. Also,

[01 Cn‘ by bn] N [In ‘ .

z,]

There are infinitely many basis to a vector space. This is just one of them.

s Up}

nullity A = dim Nul A

rank A = dim Col A




CHAPTER 5. EIGENVALUES AND EIGENVECTORS

Keywords: Eigenvectors, Eigenvalues, algebraic multiplicity, geometric multiplicity, Characteristic Polyno-
mial, Similarity, Diagonalization, Matrix Representation, Complex Eigenvalues.

Defintion 1. Let Abe an nxn matrix. If there exists a
(real) scalar A and a non-zero vector v € R” such that
Av = Av, then A is called an eigenvalue of A and v is
called an eigenvector of A corresponding to A.

What is the set E of eigenvectors (and zero vec-
tor)? We have Ej = Null(A — A1) because

< Av=Alv
(A-ADHv=0

o Av=Av
o Av-Alv=0 <
< veNull(A-AD

We call E; the eigenspace of A for A. The dimension
of the eigenspace E is called the geometric multi-
plicty (geo. mul.) of A.

Theorem 2. The eigenvalues of a triangular matrix
are the diagonal entries.

veE),

Theorem 3. Let vy,..., v, be eigenvectors of pair-wise
distinct eigenvalues 14,...,1;. Then

{Ul,...,l/r}

is alinearly independent set.

Defintion 4. The polynomial
det(A-AD)

in variable A is called the characteristic polynomial
of A. If A is a root of the characteristic polynomial of
A, then A is an eigenvalue of A. The multiplicity as a
root is called the algebraic multiplicity (alg. mul.).

Defintion 5. Ais similar to B if there is an invertible
matrix P such that A= PBP~L. If Ais similar to B, B
is also similar to A.
Theorem 6. If Aand B are similar, they have the same
characteristic polynomial, hence the same eigenval-
ues with the same multiplicities.
/A\Two matrices with the same eigenvalues do not
have to be similar. For example,

1 0 1 1

[0 | and [0 1]

Defintion 7. A n x n matrix A is diagonalizable if A
is similar to a diagonal matrix, i.e. A= PDP~! for
some invertible matrix P and a diagonal matrix D.

Theorem 8. Let A be n x n matrix.
Ais diagonalizable < Ahas n L.I. eigenvectors

Steps to Diagonalization.
(i) Find the eigenvalue of A.
(ii) Find basis for each eigenspaces.
(iii) Construct P from the vectors in (ii).
(iv) Construct D from the corresponding eigen-
values.

The eigenvector and eigenspace of linear trans-
formation is defined the same way from T'(v) = Av.

Let T:V — V be alinear transformation. Let 98 =
{b1,..., by} be a basis of an n-dim. vector space V.
Define the matrix representation of T with respect
to & by

[Tg = [IT(b1)]x
Then for any x € V, we have
[T(X)] =[Tlnlxls

Theorem 9. Let P be the matrix whose columns are
given by a basis 4. Let T : R” — R" be a linear trans-
formation given by T'(x) = Ax. Then [T]g = P~LAP.
In particular, A= P[T]ggP’l.

(T (bn)) )

Theorem 10. A nxn matrix with n distinct eigenval-
ues is diagonalizable.
Proof. This follows from Theorem 3 and Theorem 8.

Theorem 11. Let Abe nxnmatrix with distinct eigen-

values A1,...,1p.

(a) geo. mul. of A; < alg. mul. of A, for1 <k < p.

(b) A diagonalizable < sum of geo. mul. equals n <
alg. mul. of 1 = geo. mul. of A foralll1 < k< p.

(c) A diagonalizable and % is a basis for E,,, then

%, U ---U By forms an eigenvector basis for R”.
1)

All theory developed so far works well to C”. Namely,
we say that A and v is a complex eigenvalue and a
complex eigenvector of an n x n matrix A if there
exists A € C and v € C” such that Av = Av.

/\(This might not be covered during class) For
a n x n matrix A4, if A is an eigenvalue of A with an
eigenvector v of A. Then A is an eigenvector for the
eigenvalue A where s denotes complex conjugation.
Theorem 12. Let Abe areal 2 x2 matrix with a com-
plex eigenvalue A = a— bi(b # 0) and an asssociated
eigenvector v € C2. Then

-b
o

My denotes set union. The union 9B1U---U%Bp is anew set that
contains all elements of % for 1 < k < p.

a

A=PCP 'withP=[Rev Imv]andC= b




CHAPTER 6. ORTHOGONALITY AND LEAST SQUARES

Keywords: inner product, dot product, length of a vector, distance between two vectors, orthogonality,
orthogonal complement, orthogonal set/basis, orthogonal matrix, orthogonal projection, Gram-Schmidt,

QR factorization.

Defintion 13. For u, v € R”, the dot product (or the
inner product) of  and v is u” v and is written u- v.
T T

Ifu=[w,...,un] and v={v1,...,v,] ,thenu-v=
uvy+--+ Uyy.

Defintion 14. The length ||v|| of a vector is defined
by VUV =1/v?+---+ 5. In particular, ||v|[* = v- v.
For a scalar ¢ € R, we have ||cv|| = |c|||v]|. If||v]] =1,
v is called a unit vector.

Defintion 15. The distance between u and v is de-
fined by dist(u, v) = llu—v|| = Ilv — ull.

Defintion 16. Two vectors v and v are orthogonal if
u-v=0. We sometimes denote itby u L v.

Theorem 17 (Pythagorean). If u L v, then
e+ vl = lul® +[v]]?

Defintion 18. For a subspace W c R”, a vector v is
orthogonal to W if for all w e W, v L w. The set of
all vectos v that are orthogonal to W is called the or-
thogonal complement of W and is denoted by W+.
W+ is a subspace of R".

(Row A)' =Nul A and (Col A" =Nul AT

Defintion 19. The set {u,..., up} of vectors in R”" is
orthogonal set if every pair of distinct vectors are or-
thogonal. An orthogonal basis is a orthogonal set
that is also a basis.

Theorem 20. Let{uy,..., up} be aorthogonal set with
all u; nonzero vectors, then it is linearly indepen-
dent.

Defintion 21. Let W < R" be a subspace with or-
thogonal basis {w;,..., wp} and y € R". The projec-
tion Projy,, y of y onto W is defined by

. “w
y-un +J’P

Proj =—w + wy.
Iwy="," wy-w, "

1°°- U7

Theorem 22. Let W < R" be a subspace of R". Let
y € R"™. Then y can be uniquely written as
y=jJ+z

where 7 € W and z € Wt. In fact, y = Projy,y =
UUTy where U is the matrix whose columns are a
orthonormal basis of W. Furthermore,

(@) ye€ W ifand onlyif y = Projy, y.

(b) 7 is the closest point to y in W in the sense

that|ly—7ll<lly—wl| forall we W.

Theorem 23. A matrix U is orthogonal (i.e. U Ty =
I) if and only if the columns of U form an orthonor-
mal basis of R”. If U is square, U orthogonal if and
onlyif UT = U™

Theorem 24 (Gram-Schmidt). Let{xy,...,x,} beaba-
sis for a nonzero subspace W of R”. Then we can
construct an orthogonal basis {u, ..., up} via

25} = X1
— X2 Uy
U = X2y
Xp Uy Xp-Up-1
= _ P —e PP
L[p - xp up-uy u Up-1-Up-1 p-1

and Span{xy, ..., x¢} = Span{u,...,ui} for1 < k < p.
In addition, one can obtain orthonormal basis via

. . . Uy L{p
normalization, i.e. {_Ilulll"”’ Tyl }

Theorem 25 (QR Factorization). Let Abe an m x n
matrix with linearly independent columns. Then A =
QR where Q = [u; uy] is an m x n orthogo-
nal matrix for some orthonormal basis {u;,..., u;}
for Col A, and R is an n x n upper triangular invert-
ible matrix with positive entries on its diagonal with
R=0QTA.

A\ If one chooses an arbitrary orthonormal basis of
Col A, QT A may not be have positive diagonal en-
try. If the kth diagonal entry i of R is negative, we
canreplace both ryx and uy by —rx and —uy respec-
tively.

Defintion 26. For mxn Aand b € R™, aleast-squares
solution of Ax = b is X € R” such that ||b— AX|| <
||b— Ax]| for all x € R".

To find %, we solve the normal equation for Ax =
b, AT Ax = AT b which is always consistent. When
AT A is invertible (this is not always the case), we
have
£=(ATATATD.

Least-squares solution of Ax = b may not be unique.
However, it is unique in the following situation.
Theorem 27. Let Abe an m x n matrix with linearly
independent columns. Then we have a QR factor-
ization A = QR. Then for each b € R™, the equation
Ax = b has a unique least-square solution,

%=R'Q"p.



CHAPTER 6.6 “LEAST-SQUARES LINE”
Given an experimental data

(x1,¥1), (X2, ¥2)5 ..o, (X, Y1)

we want to find a line y = By + 1 x that best fits the
data. In particular, we want By and f; such that

Bo + B1x1 7

Bo + P1xn Yn
This is same as trying to solve the linear system

1 x n
1 x ’60] Y2
Bl |:
~——
1 Xn :ﬂ yn
~——
=A =b

In many real life applications, A = bis inconsistent.
The least-squares solution [Bo 1] T defines a line
¥ = PBo + P1x which we call least-squares line that
best fits the data point (x1, y1),..., (X5, ¥»). To recall,
[Bo Bi] T is the solution to the equation ATAB =
ATb.

CHAPTER 7.1 DIAGONALIZATION OF SYMMETRIC
MATRICES

Defintion 1. Amatrix Ais symmetricif A= A”. Equiv-
alently, the matrix has arbitrary entries along the main
diagonal, and its entries are symmetric with respect
to the main diagonal.

Defintion 2. A is orthogonally diagonalizable if there
exists an orthogonal matrix P (P~'=PPyanda diag-
onal matrix D such that A= PDPT.

Theorem 3 (Spectral Theorem). Let A be an sym-
metric n x n-matrix. Then

(a) Ahas nreal eigenvalues, counting multiplic-
ities.

(b) Thedimension of the eigenspace for each eigen-

value A equals the multiplicity of A as a root

of the characteristic equation. (i.e. diago-

nalizable)

(c) The eigenspaces are mutually orthogonal, in
the sense that eigenvectors corresponding to
different eigenvalues are orthogonal.

Furthermore, an n x n-matrix A is symmetric if and
only if A is orthogonally diagonalizable.

How do we orthogonally diagonalize an 7 x n-matrix
A? You can do this when you can find an orthonor-
mal basis consisting {uy, ..., u,} of eigenvectors of A
(not always possible). Let

Q = [ul un]
which is an orthogonal matrix. Then
A=QDQ"
where D is the diagonal matrix with eigenvalues cor-
responding to {uy,...,u,}. What is amazing about
the spectral theorem is that it says that for a sym-

metric matrix A, you can always find an orthonor-
mal basis of eigenvectors of A.
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