
CHAPTER 2. MATRIX ALGEBRA

Keywords: Matrix multiplication, transpose of a matrix AT , inverse matrix A−1

(i) A
[
b1 · · · bn

]
=

[
Ab1 · · · Abn

]
(ii) A−1 =

1

ad− bc

[
d −b

−c a

]
(iii)

[
A I

]
→

[
I A−1

]
for 2× 2 A with ad− bc ̸= 0 for any square matrix A

(iv) (AB)T = BTAT (v) (AB)−1 = B−1A−1 (vi) (A−1)T = (AT )−1

for any matrices A,B for invertible matrices A,B for an invertible matrix A

Theorem 1. An n× n matrix A is invertible if and only if A is row equivalent to In.

Theorem 2. (Invertible Matrix Theorem) For an n× n matrix A, (a)-(l) are all equivalent
A has n pivot (columns) ⇔ (d) ⇔ (e) ⇔ (f)(i) A has n pivot (rows) ⇔ (g) ⇔ (h) ⇔ (i)(ii)

CHAPTER 3. DETERMINANTS

Keywords: Determinants, Cofactor Expansion across a row or a column, relationship between row
operations and determinants, Cramer’s Rule, Areas and volumes as determinants.

Defintion 3. Let A be an n× n-matrix.

(a) The submatrix Aij is an (n − 1) × (n − 1)-
matrix obtained from A by deleting ith row
and jth column.

(b) determinant of A is recursively defined as

a11 detA11−a12 detA12+· · ·+(−1)1+na1n detA1n

Theorem 5. If A is a triangular matrix, then detA
is the product of the entries on the diagonal of A.

Theorem 6. A square matrix A is invertible if and
only if detA ̸= 0.

Theorem 7. detA = detAT and

det(AB) = (detA)(detB)

Defintion 4. The (i, j)-cofactor of A is

Cij = (−1)i+j detAij

cofactor expansion across row i

det A = ai1Ci1 + · · ·+ ainCin

cofactor expansion down column j

det A = a1jC1j + · · ·+ anjCnj

(a) detB = detA if B is obtained by adding
a multiple of another row.

(b) If B is obtained by interchanging two rows,
then detB = −detA.

(c) If B is obtained by multipying k to a row,
detB = k detA.

Cramer’s Rule Let A be invertible n × n-matrix
and b ∈ Rn. Then the ith entry xi of the unique
solution is given by

xi =
detAi(b)

detA

where Ai(b) =
[
a1 · · · b · · · an

]
.

Determinant and Volumes

(a) (Parallelogram) Let v1, v2 ∈ R2. Then the
area of the parallelogram formed by v1 and
v2 is detA where A =

[
v1 v2

]
.

(b) (Parallelopiped) Let v1, v2, v3 ∈ R3. Then
the volume of the parallelopiped formed by
v1, v2, v3 is detA where A =

[
v1 v2 v3

]
.

Let A be an invertible n× n matrix. Then (1)

A−1 =
1

detA
adj A

=
1

detA


C11 C21 · · · Cn1

C12 C22 · · · Cn2

...
...

. . .
...

C1n C2n · · · Cnn


(a) T : R2 → R2 be a linear transformation

with standard matrix A. If S is a region in
R2 with finite area. Then

area of T (S) = |detA| · area of S

(b) T : R3 → R3 be a linear transformation
with standard matrix A. If S is a region in
R3 with finite volume. Then

volume of T (S) = |detA| · volume of S

(1)The (i, j)-entry of A−1 is Cji divided by detA, NOT Cij .
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CHAPTER 4: VECTOR SPACES

Keywords: vector space, subspace, basis, null, column, and row spaces, dimension, coordinate vec-
tors, change-of-coordinate matrix, rank-nullity theorem.
Defintion 8. A vector space is a nonempty set V
of objects called vectors with two operations ad-
dition and mutlipliaction by scalars (real numbers)
with ten properties in pg. 202-203.
Defintion 9. A subspace of a vector space V is a
subset W of V such that (i) 0 ∈ W , (ii) is closed
under addition, and (iii) is closed under scalar
multiplication.
Defintion 10. A linear transformation T : V →
W is a function such that T (u+ v) = T (u) + T (v)
and T (cu) = cT (u).

Example 11. The set Rn of column vectors with
n entries and the set Pn of polynomials of degree
at most n are vector spaces.(2)Also, a subspace of
a vector space is a vector space.
Example 12. Let v1, . . . , vp ∈ V . Then the span

Span{v1, . . . , vp} = {c1v1 + · · ·+ cpvp | ci ∈ R}
of {v1, . . . , vn} is a subspace of V . This is called
the subspace of V generated by {v1, . . . , vp}.

(2)The addition and scalar multiplications of Rn and Pn are
defined differently.

Defintion 13. A set of vectors {v1, . . . , vp} in V is
linearly independent if the linear dependence
relation c1v1 + · · · + cpvp = 0 has only trivial so-
lution.

Theorem 14. {v1, . . . , vp} with v1 ̸= 0 is linearly
dependent if and only if some vj (j > 1) is a linear
combination of v1, . . . , vj−1.

Defintion 15. A indexed set B of vectors in a vec-
tor space V is called a basis if (i) B is linearly
independent and (ii) Span B = V .

Defintion 16. If a vector space V is spanned by a
finite set, then V is said to be finite-dimensional
and the number of vectors in a basis is called a
dimension of V . (3)

(3)A basis of a vector space is not unique, but they all have the
same number of vectors by Theorem 18.

Theorem 17. (Spanning Set Theorem) Let S =
{v1, . . . , vp} be a subset of V and let W = Span S.
Then (i) if vk ∈ S is a linear combination of the re-
maining vectors in S, then the set {v1, . . . ,��vk , . . . , vp}
formed by removing vk from S still spans W and
(ii) if S ̸= {0}, then a subset of S is a basis of W .
Theorem 18. (a) If a vector space V has a basis
B with n vectors, then any set in V containing
more than n vectors must be linearly dependent.
Also, every basis of V must consist of exactly n
vectors. (b) Every vector can be written uniquely
as a linear combinations of vectors in B.
Theorem 19. Let W be a subspace of a finite-
dimensional vector space. Then dim W ≤ dim V .
Theorem 20. For dim V = n, (i) any linearly in-
dependent set of V with n-elements or (ii) any
spanning set of V with n-elements is a basis.

Let A be a m × n-matrix. Write A =
[
a1 · · · an

]
where ais are the column vectors of A. Also,

let r1, . . . , rm be its row vectors. Let T : Rn → Rm be the linear transformation defined by A.
Subspace A basis(4) Dimension
Nul A = {x ∈ Rn | Ax = 0} B is the set of vectors appearing in the nullity A = dim Nul A

Nul A = Ker(T ) subspace of Rn general solution in parametric vector form
Col A = Span {a1, . . . , an} B = { pivot columns of A } rank A = dim Col A

Col A = Range(T ) subspace of Rm

Row A = Span {r1, . . . , rn} B is the set of nonzero row vectors of Row A = Row B

Row A is a subspace of Rn an echelon form B of A A → B row. eq.

Theorem 21 (Rank-Nullity).

rank A+ nullity A

= # of cols. of A

Defintion 22. The standard ba-
sis is the set {e1, . . . , en} in Rn

where ei is the vector whose en-
tries are all zero except 1 at the
ith entry.

Defintion 23. B = {b1, . . . , bn}
be a basis.

[x]B =

c1...
cn


given x = c1b1 + · · · + cnbn, is
called coordinate vector of x rel-
ative to B.

Defintion 24. B = {b1, . . . , bn},
C = {c1, . . . , cn} be bases of V .

P
C←B

=
[
[b1]C · · · [bn]C

]
is called the change-of-coordinates
matrix from B to C. Also,[
c1 · · ·cn b1 · · ·bn

]
→

[
In P

C←B

]
(4)There are infinitely many basis to a vector space. This is just one of them.



CHAPTER 5. EIGENVALUES AND EIGENVECTORS

Keywords: Eigenvectors, Eigenvalues, algebraic multiplicity, geometric multiplicity, Characteristic Polyno-
mial, Similarity, Diagonalization, Matrix Representation, Complex Eigenvalues.

Defintion 1. Let A be an n×n matrix. If there exists a
(real) scalarλ and a non-zero vector v ∈Rn such that
Av =λv , then λ is called an eigenvalue of A and v is
called an eigenvector of A corresponding to λ.

What is the set Eλ of eigenvectors (and zero vec-
tor)? We have Eλ = Null(A−λI ) because

v ∈ Eλ ⇔ Av =λv ⇔ Av =λI v
⇔ Av −λI v = 0 ⇔ (A−λI )v = 0
⇔ v ∈ Null(A−λI )

We call Eλ the eigenspace of A for λ. The dimension
of the eigenspace Eλ is called the geometric multi-
plicty (geo. mul.) of λ.
Theorem 2. The eigenvalues of a triangular matrix
are the diagonal entries.

Theorem 3. Let v1, . . . , vr be eigenvectors of pair-wise
distinct eigenvalues λ1, . . . ,λr . Then

{v1, . . . , vr }

is a linearly independent set.

Defintion 4. The polynomial

det(A−λI )

in variable λ is called the characteristic polynomial
of A. If λ is a root of the characteristic polynomial of
A, then λ is an eigenvalue of A. The multiplicity as a
root is called the algebraic multiplicity (alg. mul.).

Defintion 5. A is similar to B if there is an invertible
matrix P such that A = PBP−1. If A is similar to B , B
is also similar to A.

Theorem 6. If A and B are similar, they have the same
characteristic polynomial, hence the same eigenval-
ues with the same multiplicities.

"Two matrices with the same eigenvalues do not
have to be similar. For example,[

1 0
0 1

]
and

[
1 1
0 1

]

Defintion 7. A n ×n matrix A is diagonalizable if A
is similar to a diagonal matrix, i.e. A = PDP−1 for
some invertible matrix P and a diagonal matrix D .

Theorem 8. Let A be n ×n matrix.

A is diagonalizable ⇔ A has n L.I. eigenvectors

Steps to Diagonalization.
(i) Find the eigenvalue of A.

(ii) Find basis for each eigenspaces.
(iii) Construct P from the vectors in (ii).
(iv) Construct D from the corresponding eigen-

values.

The eigenvector and eigenspace of linear trans-
formation is defined the same way from T (v) =λv .

Let T : V →V be a linear transformation. Let B =
{b1, . . . ,bn} be a basis of an n-dim. vector space V .
Define the matrix representation of T with respect
to B by

[T ]B = [
[T (b1)]B · · · [T (bn)]B

]
Then for any x ∈V , we have

[T (x)]B = [T ]B[x]B

Theorem 9. Let P be the matrix whose columns are
given by a basis B. Let T :Rn →Rn be a linear trans-
formation given by T (x) = Ax. Then [T ]B = P−1 AP .
In particular, A = P [T ]BP−1.

Theorem 10. A n×n matrix with n distinct eigenval-
ues is diagonalizable.
Proof. This follows from Theorem 3 and Theorem 8.

Theorem 11. Let A be n×n matrix with distinct eigen-
values λ1, . . . ,λp .
(a) geo. mul. of λk ≤ alg. mul. of λk for 1 ≤ k ≤ p.
(b) A diagonalizable ⇔ sum of geo. mul. equals n ⇔

alg. mul. of λk = geo. mul. of λk for all 1 ≤ k ≤ p.
(c) A diagonalizable and Bk is a basis for Eλk

, then
B1 ∪ ·· ·∪Bp forms an eigenvector basis for Rn .
(1)

All theory developed so far works well toCn . Namely,
we say that λ and v is a complex eigenvalue and a
complex eigenvector of an n × n matrix A if there
exists λ ∈C and v ∈Cn such that Av =λv .

"(This might not be covered during class) For
a n ×n matrix A, if λ is an eigenvalue of A with an
eigenvector v of λ. Then λ is an eigenvector for the
eigenvalue λ where • denotes complex conjugation.
Theorem 12. Let A be a real 2×2 matrix with a com-
plex eigenvalue λ= a −bi (b ̸= 0) and an asssociated
eigenvector v ∈C2. Then

A = PC P−1 with P = [
Re v Im v

]
and C =

[
a −b
b a

]
(1)∪ denotes set union. The union B1 ∪·· ·∪Bp is a new set that
contains all elements of Bk for 1 ≤ k ≤ p.

1



CHAPTER 6. ORTHOGONALITY AND LEAST SQUARES

Keywords: inner product, dot product, length of a vector, distance between two vectors, orthogonality,
orthogonal complement, orthogonal set/basis, orthogonal matrix, orthogonal projection, Gram-Schmidt,
QR factorization.

Defintion 13. For u, v ∈ Rn , the dot product (or the
inner product) of u and v is uT v and is written u ·v .

If u = [
u1, . . . ,un

]T
and v = [

v1, . . . , vn
]T

, then u · v =
u1v1 +·· ·+un vn .

Defintion 14. The length ||v || of a vector is defined

by
p

v · v =
√

v2
1 +·· ·+ v2

n . In particular, ||v ||2 = v · v .

For a scalar c ∈ R, we have ||cv || = |c|||v ||. If ||v || = 1,
v is called a unit vector.

Defintion 15. The distance between u and v is de-
fined by dist(u, v) = ||u − v || = ||v −u||.

Defintion 16. Two vectors u and v are orthogonal if
u · v = 0. We sometimes denote it by u ⊥ v .

Theorem 17 (Pythagorean). If u ⊥ v , then

||u + v ||2 = ||u||2 +||v ||2
Defintion 18. For a subspace W ⊂ Rn , a vector v is
orthogonal to W if for all w ∈ W , v ⊥ w . The set of
all vectos v that are orthogonal to W is called the or-
thogonal complement of W and is denoted by W ⊥.
W ⊥ is a subspace of Rn .

(Row A)⊥ = Nul A and (Col A)⊥ = Nul AT

Defintion 19. The set {u1, . . . ,up } of vectors in Rn is
orthogonal set if every pair of distinct vectors are or-
thogonal. An orthogonal basis is a orthogonal set
that is also a basis.

Theorem 20. Let {u1, . . . ,up } be a orthogonal set with
all ui nonzero vectors, then it is linearly indepen-
dent.

Defintion 21. Let W ⊂ Rn be a subspace with or-
thogonal basis {w1, . . . , wp } and y ∈ Rn . The projec-
tion ProjW y of y onto W is defined by

ProjW y = y ·w1

w1 · · ·w1
w1 +·· ·+ y ·wp

wp ·wp
wp .

Theorem 22. Let W ⊂ Rn be a subspace of Rn . Let
y ∈Rn . Then y can be uniquely written as

y = ŷ + z

where ŷ ∈ W and z ∈ W ⊥. In fact, ŷ = ProjW y =
UU T y where U is the matrix whose columns are a
orthonormal basis of W . Furthermore,

(a) y ∈W if and only if y = ProjW y .
(b) ŷ is the closest point to y in W in the sense

that ||y − ŷ || < ||y −w || for all w ∈W .

Theorem 23. A matrix U is orthogonal (i.e. U T U =
I ) if and only if the columns of U form an orthonor-
mal basis of Rn . If U is square, U orthogonal if and
only if U T =U−1.

Theorem 24 (Gram-Schmidt). Let {x1, . . . , xp } be a ba-
sis for a nonzero subspace W of Rn . Then we can
construct an orthogonal basis {u1, . . . ,up } via

u1 = x1

u2 = x2 − x2·u1
u1·u1

u1

...
up = xp − xp ·u1

u1·u1
u1 −·· ·− xp ·up−1

up−1·up−1
up−1

and Span{x1, . . . , xk } = Span{u1, . . . ,uk } for 1 ≤ k ≤ p.
In addition, one can obtain orthonormal basis via

normalization, i.e.
{

u1
||u1|| , . . . ,

up

||up ||
}

.

Theorem 25 (QR Factorization). Let A be an m ×n
matrix with linearly independent columns. Then A =
QR where Q = [

u1 · · · un
]

is an m ×n orthogo-
nal matrix for some orthonormal basis {u1, . . . ,un}
for Col A, and R is an n ×n upper triangular invert-
ible matrix with positive entries on its diagonal with
R =QT A.

" If one chooses an arbitrary orthonormal basis of
Col A, QT A may not be have positive diagonal en-
try. If the kth diagonal entry rkk of R is negative, we
can replace both rkk and uk by−rkk and−uk respec-
tively.

Defintion 26. For m×n A and b ∈Rm , a least-squares
solution of Ax = b is x̂ ∈ Rn such that ||b − Ax̂|| ≤
||b − Ax|| for all x ∈Rn .

To find x̂, we solve the normal equation for Ax =
b, AT Ax = AT b which is always consistent. When
AT A is invertible (this is not always the case), we
have

x̂ = (AT A)−1 AT b.

Least-squares solution of Ax = b may not be unique.
However, it is unique in the following situation.
Theorem 27. Let A be an m ×n matrix with linearly
independent columns. Then we have a QR factor-
ization A = QR. Then for each b ∈ Rm , the equation
Ax = b has a unique least-square solution,

x̂ = R−1QT b.



CHAPTER 6.6 “LEAST-SQUARES LINE”

Given an experimental data

(x1, y1), (x2, y2), . . . , (xn , yn)

we want to find a line y = β0 +β1x that best fits the
data. In particular, we want β0 and β1 such that

β0 +β1x1 = y1
...

...
β0 +β1xn = yn

This is same as trying to solve the linear system
1 x1

1 x2
...

...
1 xn


︸ ︷︷ ︸

=A

[
β0

β1

]
︸ ︷︷ ︸
=β

=


y1

y2
...

yn


︸ ︷︷ ︸
=b

In many real life applications, Aβ= b is inconsistent.

The least-squares solution
[
β0 β1

]T
defines a line

y = β0 +β1x which we call least-squares line that
best fits the data point (x1, y1), . . . , (xn , yn). To recall,[
β0 β1

]T
is the solution to the equation AT Aβ =

AT b.

CHAPTER 7.1 DIAGONALIZATION OF SYMMETRIC

MATRICES

Defintion 1. A matrix A is symmetric if A = AT . Equiv-
alently, the matrix has arbitrary entries along the main
diagonal, and its entries are symmetric with respect
to the main diagonal.

Defintion 2. A is orthogonally diagonalizable if there
exists an orthogonal matrix P (P−1 = P D ) and a diag-
onal matrix D such that A = PDP T .

Theorem 3 (Spectral Theorem). Let A be an sym-
metric n ×n-matrix. Then

(a) A has n real eigenvalues, counting multiplic-
ities.

(b) The dimension of the eigenspace for each eigen-
value λ equals the multiplicity of λ as a root
of the characteristic equation. (i.e. diago-
nalizable)

(c) The eigenspaces are mutually orthogonal, in
the sense that eigenvectors corresponding to
different eigenvalues are orthogonal.

Furthermore, an n ×n-matrix A is symmetric if and
only if A is orthogonally diagonalizable.

How do we orthogonally diagonalize an n×n-matrix
A? You can do this when you can find an orthonor-
mal basis consisting {u1, . . . ,un} of eigenvectors of A
(not always possible). Let

Q = [
u1 · · · un

]
which is an orthogonal matrix. Then

A =QDQT

where D is the diagonal matrix with eigenvalues cor-
responding to {u1, . . . ,un}. What is amazing about
the spectral theorem is that it says that for a sym-
metric matrix A, you can always find an orthonor-
mal basis of eigenvectors of A.
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