Keywords: Matrix multiplication, transpose of a matrix A^T , inverse matrix A^{-1}

(i) $A \begin{bmatrix} b_1 & \cdots & b_n \end{bmatrix} = \begin{bmatrix} Ab_1 & \cdots & Ab_n \end{bmatrix}$	(ii) $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$	(iii) $[A \mid I] \rightarrow [I \mid A^{-1}]$
	for 2×2 A with $ad - bc \neq 0$	for any square matrix A
$(iv) (AB)^T = B^T A^T$	(v) $(AB)^{-1} = B^{-1}A^{-1}$	(vi) $(A^{-1})^T = (A^T)^{-1}$
for any matrices A, B	for invertible matrices A, B	for an invertible matrix A

Theorem 1. An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n .

Theorem 2. (Invertible Matrix Theorem) For an $n \times n$ matrix A, (a)-(l) are all equivalent

(i) A has n pivot (columns) \Leftrightarrow (d) \Leftrightarrow (e) \Leftrightarrow (f) (ii) A has n pivot (rows) \Leftrightarrow (g) \Leftrightarrow (h) \Leftrightarrow (i)

CHAPTER 3. DETERMINANTS

Keywords: Determinants, Cofactor Expansion across a row or a column, relationship between row operations and determinants, Cramer's Rule, Areas and volumes as determinants.

Defintion 3. Let A be an $n \times n$ -matrix.

- (a) The submatrix A_{ij} is an $(n-1) \times (n-1)$ -matrix obtained from A by deleting ith row and jth column.
- (b) **determinant** of A is recursively defined as $a_{11} \det A_{11} a_{12} \det A_{12} + \cdots + (-1)^{1+n} a_{1n} \det A_{1n}$

Theorem 5. If A is a triangular matrix, then $\det A$ is the product of the entries on the diagonal of A.

Theorem 6. A square matrix A is invertible if and only if $\det A \neq 0$.

Theorem 7. $\det A = \det A^T$ and

$$\det(AB) = (\det A)(\det B)$$

Cramer's Rule Let A be invertible $n \times n$ -matrix and $b \in \mathbb{R}^n$. Then the ith entry x_i of the unique solution is given by

$$x_i = \frac{\det A_i(b)}{\det A}$$

where $A_i(b) = \begin{bmatrix} a_1 & \cdots & b & \cdots & a_n \end{bmatrix}$.

Determinant and Volumes

- (a) (Parallelogram) Let $v_1, v_2 \in \mathbb{R}^2$. Then the area of the parallelogram formed by v_1 and v_2 is det A where $A = \begin{bmatrix} v_1 & v_2 \end{bmatrix}$.
- (b) (Parallelopiped) Let $v_1, v_2, v_3 \in \mathbb{R}^3$. Then the volume of the parallelopiped formed by v_1, v_2, v_3 is $\det A$ where $A = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}$.

Defintion 4. The (i, j)-cofactor of A is

$$C_{ij} = (-1)^{i+j} \det A_{ij}$$

cofactor expansion across row \boldsymbol{i}

$$\det A = a_{i1}C_{i1} + \dots + a_{in}C_{in}$$

cofactor expansion down column j

$$\det A = a_{1j}C_{1j} + \dots + a_{nj}C_{nj}$$

- (a) $\det B = \det A$ if B is obtained by adding a multiple of another row.
- (b) If B is obtained by interchanging two rows, then $\det B = -\det A$.
- (c) If B is obtained by multipying k to a row, $\det B = k \det A$.

Let A be an invertible $n \times n$ matrix. Then ⁽¹⁾

$$A^{-1} = \frac{1}{\det A} \operatorname{adj} A$$

$$= \frac{1}{\det A} \begin{bmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{bmatrix}$$

(a) $T:\mathbb{R}^2\to\mathbb{R}^2$ be a linear transformation with standard matrix A. If S is a region in \mathbb{R}^2 with finite area. Then

area of
$$T(S) = |\det A| \cdot \text{ area of } S$$

(b) $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation with standard matrix A. If S is a region in \mathbb{R}^3 with finite volume. Then

volume of $T(S) = |\det A| \cdot \text{volume of } S$

1

⁽¹⁾ The (i, j)-entry of A^{-1} is C_{ji} divided by $\det A$, NOT C_{ij} .

Keywords: vector space, subspace, basis, null, column, and row spaces, dimension, coordinate vectors, change-of-coordinate matrix, rank-nullity theorem.

Defintion 8. A vector space is a nonempty set Vof objects called **vectors** with two operations addition and mutlipliaction by scalars (real numbers) with ten properties in pg. 202-203.

Defintion 9. A subspace of a vector space V is a subset W of V such that (i) $0 \in W$, (ii) is closed under addition, and (iii) is closed under scalar multiplication.

Defintion 10. A linear transformation $T:V\to$ W is a function such that T(u+v) = T(u) + T(v)and T(cu) = cT(u).

Defintion 13. A set of vectors $\{v_1, \ldots, v_p\}$ in V is linearly independent if the linear dependence **relation** $c_1v_1 + \cdots + c_pv_p = 0$ has only trivial so-

Theorem 14. $\{v_1,\ldots,v_p\}$ with $v_1\neq 0$ is linearly dependent if and only if some v_i (i > 1) is a linear combination of v_1, \ldots, v_{i-1} .

Defintion 15. A indexed set \mathscr{B} of vectors in a vector space V is called a **basis** if (i) \mathcal{B} is linearly independent and (ii) Span $\mathcal{B} = V$.

Defintion 16. If a vector space V is spanned by a finite set, then V is said to be **finite-dimensional** and the number of vectors in a basis is called a **dimension** of V. ⁽³⁾

Example 11. The set \mathbb{R}^n of column vectors with n entries and the set \mathbb{P}_n of polynomials of degree at most n are vector spaces. (2) Also, a subspace of a vector space is a vector space.

Example 12. Let $v_1, \ldots, v_p \in V$. Then the span $Span\{v_1, ..., v_p\} = \{c_1v_1 + \cdots + c_pv_p \mid c_i \in \mathbb{R}\}\$ of $\{v_1, \ldots, v_n\}$ is a subspace of V. This is called the **subspace** of V generated by $\{v_1, \ldots, v_p\}$.

Theorem 17. (Spanning Set Theorem) Let S = $\{v_1,\ldots,v_n\}$ be a subset of V and let $W=\operatorname{Span} S$. Then (i) if $v_k \in S$ is a linear combination of the remaining vectors in S, then the set $\{v_1, \ldots, v_k, \ldots, v_p\}$ formed by removing v_k from S still spans W and (ii) if $S \neq \{0\}$, then a subset of S is a basis of W.

Theorem 18. (a) If a vector space V has a basis \mathcal{B} with n vectors, then any set in V containing more than n vectors must be linearly dependent. Also, every basis of V must consist of exactly nvectors. (b) Every vector can be written uniquely as a linear combinations of vectors in \mathcal{B} .

Theorem 19. Let W be a subspace of a finitedimensional vector space. Then $\dim W \leq \dim V$. **Theorem 20.** For dim V = n, (i) any linearly independent set of V with n-elements or (ii) any spanning set of V with n-elements is a basis.

Let A be a $m \times n$ -matrix. Write $A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}$ where a_i s are the column vectors of A. Also, let r_1, \ldots, r_m be its row vectors. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation defined by A.

Subspace	A basis ⁽⁴⁾	Dimension
$Nul A = \{x \in \mathbb{R}^n \mid Ax = 0\}$	B is the set of vectors appearing in the	$\text{nullity } A = \dim \text{Nul } A$
$= \operatorname{Ker}(T) \text{ subspace of } \mathbb{R}^n$	general solution in parametric vector form	numity 21 — umi ivui 21
$Col A = Span \{a_1, \dots, a_n\}$	$\mathcal{B} = \{ \text{ pivot columns of } A \}$	$rank A = \dim \operatorname{Col} A$
$= \operatorname{Range}(T)$ subspace of \mathbb{R}^m		
$Row A = Span \{r_1, \dots, r_n\}$	\mathcal{B} is the set of nonzero row vectors of	Row A = Row B
is a subspace of \mathbb{R}^n	an echelon form B of A	$A \rightarrow B$ row. eq.

Theorem 21 (Rank-Nullity).

$$rank A + nullity A$$
= # of cols. of A

Defintion 22. The standard ba**sis** is the set $\{e_1,\ldots,e_n\}$ in \mathbb{R}^n where e_i is the vector whose entries are all zero except 1 at the *i*th entry.

be a basis.

$$[x]_{\mathscr{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

given $x = c_1b_1 + \cdots + c_nb_n$, is called **coordinate vector** of x rel- $[c_1 \cdots c_n | b_1 \cdots b_n] \rightarrow [I_n | P_{\mathscr{C} \cup \mathscr{C}}]$ ative to \mathcal{B} .

Defintion 23.
$$\mathscr{B} = \{b_1, \dots, b_n\}$$
 Defintion 24. $\mathscr{B} = \{b_1, \dots, b_n\}$, be a basis. $\mathscr{C} = \{c_1, \dots, c_n\}$ be bases of V .

$$P_{\mathscr{C} \leftarrow \mathscr{B}} = \begin{bmatrix} [b_1]_{\mathscr{C}} & \cdots & [b_n]_{\mathscr{C}} \end{bmatrix}$$

is called the **change-of-coordinates matrix** from \mathcal{B} to \mathcal{C} . Also,

$$[c_1 \cdots c_n | b_1 \cdots b_n] \rightarrow [I_n | P_{\mathscr{C} \leftarrow \mathscr{B}}]$$

⁽³⁾ A basis of a vector space is not unique, but they all have the same number of vectors by Theorem 18.

 $^{^{(2)}}$ The addition and scalar multiplications of \mathbb{R}^n and \mathbb{P}_n are defined differently.

⁽⁴⁾ There are infinitely many basis to a vector space. This is just one of them.

Keywords: Eigenvectors, Eigenvalues, algebraic multiplicity, geometric multiplicity, Characteristic Polynomial, Similarity, Diagonalization, Matrix Representation, Complex Eigenvalues.

Defintion 1. Let A be an $n \times n$ matrix. If there exists a (real) scalar λ and a non-zero vector $v \in \mathbb{R}^n$ such that $Av = \lambda v$, then λ is called an **eigenvalue** of A and v is called an **eigenvector** of A corresponding to λ .

What is the set E_{λ} of eigenvectors (and zero vector)? We have $E_{\lambda} = \text{Null}(A - \lambda I)$ because

$$\begin{array}{cccc} v \in E_{\lambda} & \Leftrightarrow & Av = \lambda \, v & \Leftrightarrow & Av = \lambda \, Iv \\ & \Leftrightarrow & Av - \lambda \, Iv = 0 & \Leftrightarrow & (A - \lambda \, I) \, v = 0 \\ & \Leftrightarrow & v \in \operatorname{Null}(A - \lambda \, I) \end{array}$$

We call E_{λ} the **eigenspace** of A for λ . The dimension of the eigenspace E_{λ} is called the **geometric multiplicty** (geo. mul.) of λ .

Theorem 2. The eigenvalues of a triangular matrix are the diagonal entries.

Theorem 3. Let $v_1, ..., v_r$ be eigenvectors of pair-wise distinct eigenvalues $\lambda_1, ..., \lambda_r$. Then

$$\{v_1,\ldots,v_r\}$$

is a linearly independent set.

Defintion 7. A $n \times n$ matrix A is **diagonalizable** if A is similar to a diagonal matrix, i.e. $A = PDP^{-1}$ for some invertible matrix P and a diagonal matrix D.

Theorem 8. Let *A* be $n \times n$ matrix.

A is diagonalizable \Leftrightarrow A has n L.I. eigenvectors

Steps to Diagonalization.

- (i) Find the eigenvalue of *A*.
- (ii) Find basis for each eigenspaces.
- (iii) Construct *P* from the vectors in (ii).
- (iv) Construct D from the corresponding eigenvalues.

The eigenvector and eigenspace of linear transformation is defined the same way from $T(v) = \lambda v$.

Let $T: V \to V$ be a linear transformation. Let $\mathscr{B} = \{b_1, \ldots, b_n\}$ be a basis of an n-dim. vector space V. Define the **matrix representation** of T with respect to \mathscr{B} by

$$[T]_{\mathscr{B}} = [[T(b_1)]_{\mathscr{B}} \quad \cdots \quad [T(b_n)]_{\mathscr{B}}]$$

Then for any $x \in V$, we have

$$[T(x)]_{\mathscr{B}} = [T]_{\mathscr{B}}[x]_{\mathscr{B}}$$

Theorem 9. Let P be the matrix whose columns are given by a basis \mathscr{B} . Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation given by T(x) = Ax. Then $[T]_{\mathscr{B}} = P^{-1}AP$. In particular, $A = P[T]_{\mathscr{B}}P^{-1}$.

Defintion 4. The polynomial

$$\det(A - \lambda I)$$

in variable λ is called the **characteristic polynomial** of A. If λ is a root of the characteristic polynomial of A, then λ is an eigenvalue of A. The multiplicity as a root is called the **algebraic multiplicity** (alg. mul.).

Defintion 5. *A* is **similar** to *B* if there is an invertible matrix *P* such that $A = PBP^{-1}$. If *A* is similar to *B*, *B* is also similar to *A*.

Theorem 6. If *A* and *B* are similar, they have the same characteristic polynomial, hence the same eigenvalues with the same multiplicities.

<u>∧</u>Two matrices with the same eigenvalues do not have to be similar. For example,

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Theorem 10. A $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

Proof. This follows from Theorem 3 and Theorem 8.

Theorem 11. Let *A* be $n \times n$ matrix with distinct eigenvalues $\lambda_1, ..., \lambda_p$.

- (a) geo. mul. of $\lambda_k \le$ alg. mul. of λ_k for $1 \le k \le p$.
- (b) A diagonalizable \Leftrightarrow sum of geo. mul. equals $n \Leftrightarrow$ alg. mul. of λ_k = geo. mul. of λ_k for all $1 \le k \le p$.
- (c) A diagonalizable and \mathcal{B}_k is a basis for E_{λ_k} , then $\mathcal{B}_1 \cup \cdots \cup \mathcal{B}_p$ forms an eigenvector basis for \mathbb{R}^n .

All theory developed so far works well to \mathbb{C}^n . Namely, we say that λ and ν is a **complex eigenvalue** and a **complex eigenvector** of an $n \times n$ matrix A if there exists $\lambda \in \mathbb{C}$ and $\nu \in \mathbb{C}^n$ such that $A\nu = \lambda \nu$.

⚠ (This might not be covered during class) For a $n \times n$ matrix A, if λ is an eigenvalue of A with an eigenvector v of λ . Then $\overline{\lambda}$ is an eigenvector for the eigenvalue $\overline{\lambda}$ where $\overline{\bullet}$ denotes complex conjugation. **Theorem 12.** Let A be a real 2×2 matrix with a complex eigenvalue $\lambda = a - bi(b \neq 0)$ and an associated eigenvector $v \in \mathbb{C}^2$. Then

$$A = PCP^{-1}$$
 with $P = \begin{bmatrix} \text{Re } v & \text{Im } v \end{bmatrix}$ and $C = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$

1

 $^{^{(1)}}$ \cup denotes set union. The union $\mathcal{B}_1 \cup \cdots \cup \mathcal{B}_p$ is a new set that contains all elements of \mathcal{B}_k for $1 \le k \le p$.

Keywords: inner product, dot product, length of a vector, distance between two vectors, orthogonality, orthogonal complement, orthogonal set/basis, orthogonal matrix, orthogonal projection, Gram-Schmidt, QR factorization.

Defintion 13. For $u, v \in \mathbb{R}^n$, the **dot product** (or the **inner product**) of u and v is $u^T v$ and is written $u \cdot v$. If $u = [u_1, ..., u_n]^T$ and $v = [v_1, ..., v_n]^T$, then $u \cdot v = u_1 v_1 + \cdots + u_n v_n$.

Defintion 14. The **length** ||v|| of a vector is defined by $\sqrt{v \cdot v} = \sqrt{v_1^2 + \dots + v_n^2}$. In particular, $||v||^2 = v \cdot v$. For a scalar $c \in \mathbb{R}$, we have ||cv|| = |c|||v||. If ||v|| = 1, v is called a **unit vector**.

Defintion 15. The **distance** between u and v is defined by $\operatorname{dist}(u, v) = ||u - v|| = ||v - u||$.

Defintion 19. The set $\{u_1, \ldots, u_p\}$ of vectors in \mathbb{R}^n is **orthogonal set** if every pair of distinct vectors are orthogonal. An **orthogonal basis** is a orthogonal set that is also a basis.

Theorem 20. Let $\{u_1, \ldots, u_p\}$ be a orthogonal set with all u_i nonzero vectors, then it is linearly independent.

Defintion 21. Let $W \subset \mathbb{R}^n$ be a subspace with orthogonal basis $\{w_1, ..., w_p\}$ and $y \in \mathbb{R}^n$. The **projection** $\operatorname{Proj}_W y$ of y onto W is defined by

$$\operatorname{Proj}_{W} y = \frac{y \cdot w_{1}}{w_{1} \cdots w_{1}} w_{1} + \cdots + \frac{y \cdot w_{p}}{w_{p} \cdot w_{p}} w_{p}.$$

Theorem 24 (Gram-Schmidt). Let $\{x_1, ..., x_p\}$ be a basis for a nonzero subspace W of \mathbb{R}^n . Then we can construct an orthogonal basis $\{u_1, ..., u_p\}$ via

$$u_{1} = x_{1}$$

$$u_{2} = x_{2} - \frac{x_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}$$

$$\vdots$$

$$u_{p} = x_{p} - \frac{x_{p} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} - \dots - \frac{x_{p} \cdot u_{p-1}}{u_{p-1} \cdot u_{p-1}} u_{p-1}$$

and $\operatorname{Span}\{x_1,\ldots,x_k\} = \operatorname{Span}\{u_1,\ldots,u_k\}$ for $1 \le k \le p$. In addition, one can obtain orthonormal basis via normalization, i.e. $\left\{\frac{u_1}{||u_1||},\ldots,\frac{u_p}{||u_p||}\right\}$.

Defintion 26. For $m \times n$ A and $b \in \mathbb{R}^m$, a **least-squares solution** of Ax = b is $\hat{x} \in \mathbb{R}^n$ such that $||b - A\hat{x}|| \le ||b - Ax||$ for all $x \in \mathbb{R}^n$.

To find \hat{x} , we solve the *normal equation* for Ax = b, $A^TAx = A^Tb$ which is always consistent. When A^TA is invertible (this is not always the case), we have

$$\hat{x} = (A^T A)^{-1} A^T b.$$

Defintion 16. Two vectors u and v are **orthogonal** if $u \cdot v = 0$. We sometimes denote it by $u \perp v$.

Theorem 17 (Pythagorean). If $u \perp v$, then

$$||u + v||^2 = ||u||^2 + ||v||^2$$

Defintion 18. For a subspace $W \subset \mathbb{R}^n$, a vector v is **orthogonal** to W if for all $w \in W$, $v \perp w$. The set of all vectos v that are orthogonal to W is called the **orthogonal complement** of W and is denoted by W^{\perp} . W^{\perp} is a subspace of \mathbb{R}^n .

$$(\text{Row } A)^{\perp} = \text{Nul } A$$
 and $(\text{Col } A)^{\perp} = \text{Nul } A^{T}$

Theorem 22. Let $W \subset \mathbb{R}^n$ be a subspace of \mathbb{R}^n . Let $y \in \mathbb{R}^n$. Then y can be uniquely written as

$$y = \hat{y} + z$$

where $\hat{y} \in W$ and $z \in W^{\perp}$. In fact, $\hat{y} = \operatorname{Proj}_W y = UU^T y$ where U is the matrix whose columns are a orthonormal basis of W. Furthermore,

- (a) $y \in W$ if and only if $y = \text{Proj}_W y$.
- (b) \hat{y} is the closest point to y in W in the sense that $||y \hat{y}|| < ||y w||$ for all $w \in W$.

Theorem 23. A matrix U is **orthogonal** (i.e. $U^TU = I$) if and only if the columns of U form an orthonormal basis of \mathbb{R}^n . If U is square, U orthogonal if and only if $U^T = U^{-1}$.

Theorem 25 (QR Factorization). Let A be an $m \times n$ matrix with linearly independent columns. Then A = QR where $Q = \begin{bmatrix} u_1 & \cdots & u_n \end{bmatrix}$ is an $m \times n$ orthogonal matrix for some orthonormal basis $\{u_1, \ldots, u_n\}$ for Col A, and R is an $n \times n$ upper triangular invertible matrix with positive entries on its diagonal with $R = Q^T A$.

 $\underline{\wedge}$ If one chooses an arbitrary orthonormal basis of Col A, Q^TA may not be have positive diagonal entry. If the kth diagonal entry r_{kk} of R is negative, we can replace both r_{kk} and u_k by $-r_{kk}$ and $-u_k$ respectively.

Least-squares solution of Ax = b may not be unique. However, it is unique in the following situation.

Theorem 27. Let *A* be an $m \times n$ matrix with linearly independent columns. Then we have a QR factorization A = QR. Then for each $b \in \mathbb{R}^m$, the equation Ax = b has a unique least-square solution,

$$\hat{x} = R^{-1} Q^T b.$$

CHAPTER 6.6 "LEAST-SQUARES LINE"

Given an experimental data

$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$$

we want to find a line $y = \beta_0 + \beta_1 x$ that best fits the data. In particular, we want β_0 and β_1 such that

$$\beta_0 + \beta_1 x_1 = y_1$$

$$\vdots$$

$$\beta_0 + \beta_1 x_n = y_n$$

This is same as trying to solve the linear system

$$\begin{bmatrix}
1 & x_1 \\
1 & x_2 \\
\vdots & \vdots \\
1 & x_n
\end{bmatrix}
\underbrace{\begin{bmatrix}\beta_0 \\ \beta_1\end{bmatrix}}_{=\beta} = \underbrace{\begin{bmatrix}y_1 \\ y_2 \\ \vdots \\ y_n\end{bmatrix}}_{=h}$$

In many real life applications, $A\beta = b$ is inconsistent. The least-squares solution $\begin{bmatrix} \beta_0 & \beta_1 \end{bmatrix}^T$ defines a line $y = \beta_0 + \beta_1 x$ which we call **least-squares line** that best fits the data point $(x_1, y_1), \dots, (x_n, y_n)$. To recall, $\begin{bmatrix} \beta_0 & \beta_1 \end{bmatrix}^T$ is the solution to the equation $A^T A \beta = A^T b$

CHAPTER 7.1 DIAGONALIZATION OF SYMMETRIC MATRICES

Defintion 1. A matrix A is **symmetric** if $A = A^T$. Equivalently, the matrix has arbitrary entries along the main diagonal, and its entries are symmetric with respect to the main diagonal.

Defintion 2. *A* is **orthogonally diagonalizable** if there exists an orthogonal matrix $P(P^{-1} = P^{D})$ and a diagonal matrix D such that $A = PDP^{T}$.

Theorem 3 (Spectral Theorem). Let A be an symmetric $n \times n$ -matrix. Then

- (a) A has n real eigenvalues, counting multiplicities.
- (b) The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic equation. (i.e. diagonalizable)
- (c) The eigenspaces are mutually orthogonal, in the sense that eigenvectors corresponding to different eigenvalues are orthogonal.

Furthermore, an $n \times n$ -matrix A is symmetric if and only if A is orthogonally diagonalizable.

How do we orthogonally diagonalize an $n \times n$ -matrix A? You can do this when you can find an orthonormal basis consisting $\{u_1, \ldots, u_n\}$ of eigenvectors of A (not always possible). Let

$$Q = [u_1 \quad \cdots \quad u_n]$$

which is an orthogonal matrix. Then

$$A = ODO^T$$

where D is the diagonal matrix with eigenvalues corresponding to $\{u_1, \ldots, u_n\}$. What is **amazing** about the spectral theorem is that it says that for a symmetric matrix A, you can always find an orthonormal basis of eigenvectors of A.

1