## GOOGLE'S PAGERANK

We will study the searching algorithm used by Google called PageRank to rank web pages. The name comes from both the term web page and co-founder of Google Larry Page. The goal is to explain why finding the most important/relevant webpage is same thing as finding an eigenvector of certain matrix.

## 1. Markov chain

We give a very brief introduction to a Markov Chain to mathematically model web surfing (i.e. navigating through webpages). In a very vague term, a Markov chain is a sequence of vectors that encode the probability to be in a certain state after finitely many steps. Suppose we are in a universe with 5 webpages. When we write the vector

$$
x_{2}=\left[\begin{array}{r}
0.1  \tag{1}\\
0.4 \\
0.25 \\
0.25 \\
0
\end{array}\right]
$$

above encodes the information that there is a $10 \%$ chance that a user will be in page 1 after two clicks. Likewise, there is a $25 \%$ chance that a user will be in page 4 after two clicks. Since there are only 5 webpages, you end up with 1 when you add all the probabilities to be in webpage $k$ for $k=1, \ldots, 5$, i.e. all the entries. We give those vectors a special name and introduce a cousin matrix.

Definition 1.1. A probability vector is a vector with non-negative entries such that the sum of the entries is 1 . A matrix whose columns are probability vectors is called a stochastic matrix.

Example 1.2. The vector $x_{2}$ in (1) above is a probability vector. The matrix

$$
P=\left[\begin{array}{rrr}
0 & 0.7 & 0.2 \\
0.2 & 0 & 0.8 \\
0.8 & 0.3 & 0
\end{array}\right]
$$

is an example of a stochastic matrix. Note that the sum of the entries in a row does not have to be 1 .
What is the role of a stochastic matrix? The $(j, i)$-th entry of the stochastic matrix is the probability of state $i$ changing to state $j$. In our web surfing example, the $(j, i)$-th entry is the probability that a user currently in webpage $i$ will move to webpage $j$.

Example 1.3. Let's consider a new universe with only 3 websites. Suppose a user begins web surfing at webpage 1. This initial condition can be expressed as a vector as

$$
x_{0}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Suppose the probabilities of moving between pages are encoded in the matrix $P$ above in Example 1.2. Then the $i$ th entries of the vectors

$$
P x_{0}=\left[\begin{array}{r}
0 \\
0.2 \\
0.8
\end{array}\right], \quad P^{2} x_{0}=\left[\begin{array}{r}
0.3 \\
0.64 \\
0.06
\end{array}\right], \quad P^{3} x_{0}=\left[\begin{array}{r}
0.46 \\
0.108 \\
0.432
\end{array}\right], \quad \ldots, \quad P^{k} x_{0}
$$

tell us the probability of the user reaching webpage $i$ after the $k$-clicks.
We can now mathematically formulate the above phenomena as following.

Definition 1.4. A Markov chain is a sequence of probability vectors $x_{0}, x_{1}, x_{2}, \ldots$ with a stochastic matrix $P$ such that

$$
x_{1}=P x_{0}, \quad x_{2}=P x_{1}, \quad \ldots, \quad x_{k+1}=P x_{k} \text { for all } k \geq 0
$$

In fact, the sequence is determined by $x_{0}$ and $P$, as $x_{k}=P^{k} x_{0}$ for all $k \geq 0$.
Recall that we want to determine the most important webpage. We try to solve this problem under the assumption that the webpage with the highest probabilty of reaching after a very large number of steps is the most important webpage. Borrowing the terminology from Calculus, we want to see whether the sequence $\left\{x_{k}\right\}_{k \geq 0}$ converges, or equivalently, the limit

$$
\lim _{k \rightarrow \infty} x_{k}=\lim _{k \rightarrow \infty} P^{k} x_{0}
$$

exists. If such limit converges, say $q$, then we have

$$
P q=P \lim _{k \rightarrow \infty} P^{k} x_{0}=\lim _{k \rightarrow \infty} P^{k+1} x_{0}=q .
$$

Therefore, $q$ is an eigenvector of $P$ for eigenvalue 1 . We call such vector a steady-state vector as the stochastic matrix $P$ does not change $q$.

## Details 1.5.

(a) We did not explain what it means for a sequence of vectors to converge. Roughly, $\left\{x_{k}\right\}_{k \geq 0}$ converges to a vector $q$ if the the norm $\left\|x_{k}-q\right\|$ can be small as you want for big enough $k$. Alternatively, one can say that the limit exists entry-wise. If $x_{k}=\left[\begin{array}{r}x_{k 1} \\ \vdots \\ x_{k n}\end{array}\right]$ and $q=\left[\begin{array}{r}q_{1} \\ \vdots \\ q_{n}\end{array}\right]$, then

$$
\lim _{k \rightarrow \infty} x_{k}=q \text { if and only if } \lim _{k \rightarrow \infty} x_{k j}=q_{j} \text { for all } 1 \leq j \leq n
$$

(b) For any stochastic matrix $P$ and a probability vector $x$, one can check that $P x$ is again a probability vector. In particular, if the limit exists, $q$ is a probability vector. (Here we used the fact that the limit of probability vector is again a probability vector.)
(c) In general, the limit $q$ may be different as $x_{0}$ varies. What is amazing about the upcoming theorem is that if $P$ is a positive matrix, $q$ exists and is unique.

We should establish some basic facts about stochastic matrices.
Theorem 1.6. Let $P$ be a stochastic matrix. Then 1 is an eigenvalue for $P$.
Proof. Let $P^{T}$ be the transpose of $P$. Then the sum of the entries in every row is equal to 1 . Therefore the vector $\left[\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right]$ with all entries equal to 1 is a eigenvector of $P^{T}$ with eigenvalue 1 . Since $P^{T}$ and $P$ have the same eigenvalues, $P$ has eigenvalue 1 . To see why, observe that

$$
\operatorname{det}(P-\lambda I)=\operatorname{det}\left((P-\lambda I)^{T}\right)=\operatorname{det}\left(P^{T}-\lambda I\right)
$$

which tells us that the characteristic polynomial of $P$ and $P^{T}$ are the same.
Theorem 1.7 (Perron-Frobenius Theorem). If $A$ is $a n \times n$ positive stochastic matrix (i.e. all entries are positive), then it admits a unique steady state vector $q$ which spans the 1-eigenspace. Furthermore, for any probability vector $x_{0} \in \mathbb{R}^{n}$,

$$
\lim _{k \rightarrow \infty} P^{k} x_{0}=q .
$$

The proof of this fundamental theorem on Markov chain is too lengthy for this handout, so we will use the theorem without proof. By our assumption above, the importance of the webpage is given by the entry of the steady-state vector $q$ of a Markov chain $\left\{x_{k}\right\}_{k>0}$ and $P$. In fact, by Perron-Frobenius, only $P$ determines $q$. We now explain how to construct $P$ in the scenario of web surfing.

## 2. Random Walk on Directed Graphs

A graph is collection of points and edges. The chain is equally likely to move from vertex to vertex on the graph.

