
GOOGLE’S PAGERANK

We will study the searching algorithm used by Google called PageRank to rank web pages. The
name comes from both the term web page and co-founder of Google Larry Page. The goal is to explain
why finding the most important/relevant webpage is same thing as finding an eigenvector of certain
matrix.

1. MARKOV CHAIN

We give a very brief introduction to a Markov Chain to mathematically model web surfing (i.e.
navigating through webpages). In a very vague term, a Markov chain is a sequence of vectors that
encode the probability to be in a certain state after finitely many steps. Suppose we are in a universe
with 5 webpages. When we write the vector

(1) x2 =


0.1
0.4
0.25
0.25

0


above encodes the information that there is a 10% chance that a user will be in page 1 after two clicks.
Likewise, there is a 25% chance that a user will be in page 4 after two clicks. Since there are only 5
webpages, you end up with 1 when you add all the probabilities to be in webpage k for k = 1, . . . , 5,
i.e. all the entries. We give those vectors a special name and introduce a cousin matrix.

Definition 1.1. A probability vector is a vector with non-negative entries such that the sum of the
entries is 1. A matrix whose columns are probability vectors is called a stochastic matrix.

Example 1.2. The vector x2 in (1) above is a probability vector. The matrix

P =

 0 0.7 0.2
0.2 0 0.8
0.8 0.3 0


is an example of a stochastic matrix. Note that the sum of the entries in a row does not have to be 1.

What is the role of a stochastic matrix? The (j, i)-th entry of the stochastic matrix is the probability
of state i changing to state j. In our web surfing example, the (j, i)-th entry is the probability that a
user currently in webpage i will move to webpage j.

Example 1.3. Let’s consider a new universe with only 3 websites. Suppose a user begins web surfing
at webpage 1. This initial condition can be expressed as a vector as

x0 =

10
0


Suppose the probabilities of moving between pages are encoded in the matrix P above in Example 1.2.
Then the ith entries of the vectors

Px0 =

 0
0.2
0.8

 , P 2x0 =

 0.3
0.64
0.06

 , P 3x0 =

 0.46
0.108
0.432

 , . . . , P kx0

tell us the probability of the user reaching webpage i after the k-clicks.

We can now mathematically formulate the above phenomena as following.
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Definition 1.4. A Markov chain is a sequence of probability vectors x0, x1, x2, . . . with a stochastic
matrix P such that

x1 = Px0, x2 = Px1, . . . , xk+1 = Pxk for all k ≥ 0

In fact, the sequence is determined by x0 and P , as xk = P kx0 for all k ≥ 0.

Recall that we want to determine the most important webpage. We try to solve this problem under
the assumption that the webpage with the highest probabilty of reaching after a very large number
of steps is the most important webpage. Borrowing the terminology from Calculus, we want to see
whether the sequence {xk}k≥0 converges, or equivalently, the limit

lim
k→∞

xk = lim
k→∞

P kx0

exists. If such limit converges, say q, then we have

Pq = P lim
k→∞

P kx0 = lim
k→∞

P k+1x0 = q.

Therefore, q is an eigenvector of P for eigenvalue 1. We call such vector a steady-state vector as the
stochastic matrix P does not change q.

Details 1.5.

(a) We did not explain what it means for a sequence of vectors to converge. Roughly, {xk}k≥0

converges to a vector q if the the norm ||xk − q|| can be small as you want for big enough k.

Alternatively, one can say that the limit exists entry-wise. If xk =

xk1

...
xkn

 and q =

q1
...

qn

, then

lim
k→∞

xk = q if and only if lim
k→∞

xkj = qj for all 1 ≤ j ≤ n

(b) For any stochastic matrix P and a probability vector x, one can check that Px is again a
probability vector. In particular, if the limit exists, q is a probability vector. (Here we used the
fact that the limit of probability vector is again a probability vector.)

(c) In general, the limit q may be different as x0 varies. What is amazing about the upcoming
theorem is that if P is a positive matrix, q exists and is unique.

We should establish some basic facts about stochastic matrices.

Theorem 1.6. Let P be a stochastic matrix. Then 1 is an eigenvalue for P .

Proof. Let PT be the transpose of P . Then the sum of the entries in every row is equal to 1. Therefore

the vector

1...
1

 with all entries equal to 1 is a eigenvector of PT with eigenvalue 1. Since PT and P

have the same eigenvalues, P has eigenvalue 1. To see why, observe that

det(P − λI) = det((P − λI)T ) = det(PT − λI)

which tells us that the characteristic polynomial of P and PT are the same. □

Theorem 1.7 (Perron-Frobenius Theorem). If A is a n×n positive stochastic matrix (i.e. all entries are
positive), then it admits a unique steady state vector q which spans the 1-eigenspace. Furthermore, for
any probability vector x0 ∈ Rn,

lim
k→∞

P kx0 = q.

The proof of this fundamental theorem on Markov chain is too lengthy for this handout, so we will
use the theorem without proof. By our assumption above, the importance of the webpage is given by
the entry of the steady-state vector q of a Markov chain {xk}k≥0 and P . In fact, by Perron-Frobenius,
only P determines q. We now explain how to construct P in the scenario of web surfing.



2. RANDOM WALK ON DIRECTED GRAPHS

A graph is collection of points and edges. The chain is equally likely to move from vertex to vertex
on the graph.
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