1. Warm-up Problems

Problem 1. Determine if the following linear systems has no solution, one solution, and infinite solutions. If the system has one solution, find it.
a)

$$
\begin{aligned}
3 x_{1}+2 x_{2} & =7 \\
-9 x_{1}-6 x_{2} & =-21
\end{aligned}
$$

b)

$$
\begin{array}{r}
3 x_{1}+2 x_{2}=7 \\
-2 x_{1}+3 x_{2}=4
\end{array}
$$

c)

$$
\begin{array}{r}
x_{1}-2 x_{2}=2 \\
-2 x_{1}+4 x_{2}=1
\end{array}
$$

2. Suggested Problems

Problem 2 (1.1.14). Solve the following system

$$
\begin{align*}
x_{1}-3 x_{2} & =5 \tag{1}\\
-x_{1}+x_{2}+5 x_{3} & =2 \tag{2}\\
x_{2}+x_{3} & =0 \tag{3}
\end{align*}
$$

Problem 3 (1.1.19). Determine if the system is consistent. Do not completely solve the system.

$$
\begin{align*}
x_{1}+3 x_{3} & =2 \tag{1}\\
x_{2}-3 x_{4} & =3 \tag{2}\\
-2 x_{2}+3 x_{3}+2 x_{4} & =1 \tag{3}\\
3 x_{1}+7 x_{4} & =-5 \tag{4}
\end{align*}
$$

Problem 4 (1.1.22). Do the three planes $x_{1}+2 x_{2}+x_{3}=4, x_{2}-x_{3}=1$, and $x_{1}+3 x^{2}=0$ have at least one common point of intersection? Explain.

3. Additional Problems

Problem 5 (Challenge). Consider the linear system

$$
\begin{aligned}
a x_{1}+2 x_{2} & =1 \\
x_{1}-3 x_{2} & =-10
\end{aligned}
$$

(a) Can you find a value for a such that the linear system is inconsistent? If not, explain why.
(b) Can you find a value for a such that the linear system has infinite solutions? If not, explain why.
(c) Find an integer value for a such that the linear system have one solution and x_{1} is a negative integer? Is such a unique?

Problem 1.

(a) Consider

$$
\left[\begin{array}{rrr}
3 & 2 & 7 \\
-9 & -6 & -21
\end{array}\right] \xrightarrow{R_{2}=R_{2}+3 R_{1}}\left[\begin{array}{lll}
3 & 2 & 7 \\
0 & 0 & 0
\end{array}\right]
$$

Then the solution set of this matrix is the solution set of the linear equation $3 x_{1}+2 x_{2}=7$. For any x_{1}, we can always find $x_{2}=\left(7-3 x_{1}\right) / 2$. Therefore, the linear system has infinitely many solutions.
(b) Consider

$$
\left[\begin{array}{rrr}
3 & 2 & 7 \\
-2 & 3 & 4
\end{array}\right] \xrightarrow{2 R_{1}}\left[\begin{array}{rrr}
6 & 4 & 14 \\
-2 & 3 & 4
\end{array}\right] \xrightarrow{3 R_{2}}\left[\begin{array}{rrr}
6 & 4 & 14 \\
-6 & 9 & 12
\end{array}\right] \xrightarrow{R_{2}+R_{1}}\left[\begin{array}{rrr}
6 & 4 & 14 \\
0 & 13 & 26
\end{array}\right] \xrightarrow{\frac{1}{13} R_{2}}\left[\begin{array}{rrr}
6 & 4 & 14 \\
0 & 1 & 2
\end{array}\right]
$$

Then $x_{2}=2$. Plugging back to the first linear equation $3 x_{1}+2 x_{2}=7$, we get $x_{1}=1$. There is only one solution with $x_{1}=1$ and $x_{2}=2$.
(c)

$$
\left[\begin{array}{rrr}
1 & -2 & 2 \\
-2 & 4 & 1
\end{array}\right] \xrightarrow{R_{2}=R_{2}+2 R_{1}}\left[\begin{array}{rrr}
1 & -2 & 2 \\
0 & 0 & 5
\end{array}\right]
$$

However, there is no x_{1} and x_{2} such that $0 x_{1}+0 x_{2}=5$. Therefore, the linear equation has no solution.

Problem 2. When the coefficient matrix can be row reduced to a triangular form (later called the echelon form), we can immediately say that the linear system is consistent.

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
1 & -3 & 0 & 5 \\
-1 & 1 & 5 & 2 \\
0 & 1 & 1 & 0
\end{array}\right] \xrightarrow{R_{2}+R_{1}}\left[\begin{array}{rrrr}
1 & -3 & 0 & 5 \\
0 & -2 & 5 & 7 \\
0 & 1 & 1 & 0
\end{array}\right] \xrightarrow{R_{2}+2 R_{3}}\left[\begin{array}{rrrr}
1 & -3 & 0 & 5 \\
0 & 0 & 7 & 7 \\
0 & 1 & 1 & 0
\end{array}\right] \quad \xrightarrow{R_{2} \leftrightarrow R_{3}}\left[\begin{array}{rrrr}
1 & -3 & 0 & 5 \\
0 & 1 & 1 & 0 \\
0 & 0 & 7 & 7
\end{array}\right]} \\
& \xrightarrow{\frac{1}{7} \cdot R_{3}}\left[\begin{array}{rrrr}
1 & -3 & 0 & 5 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \xrightarrow{R_{2}-R_{3}}\left[\begin{array}{rrrr}
1 & -3 & 0 & 5 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{array}\right] \xrightarrow{R_{1}+3 R_{2}}\left[\begin{array}{rrrr}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

Here the blue matrix (the coefficient matrix) is of the triangular form. After row reducing to the triangular form, we can continue the algorithm of solving linear system to reach to the last matrix. Then we immediately get $x_{1}=2, x_{2}=-1$, and $x_{3}=1$.

Problem 3. Consider

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
1 & 0 & 3 & 0 & 2 \\
0 & 1 & 0 & -3 & 3 \\
0 & -2 & 3 & 2 & 1 \\
3 & 0 & 0 & 7 & -5
\end{array}\right] \xrightarrow{R_{4}-3 R_{1}}\left[\begin{array}{rrrrr}
1 & 0 & 3 & 0 & 2 \\
0 & 1 & 0 & -3 & 3 \\
0 & -2 & 3 & 2 & 1 \\
0 & 0 & -9 & 7 & -11
\end{array}\right] \xrightarrow{R_{3}+2 R_{2}}\left[\begin{array}{rrrrr}
1 & 0 & 3 & 0 & 2 \\
0 & 1 & 0 & -3 & 3 \\
0 & 0 & 3 & -4 & 7 \\
0 & 0 & -9 & 7 & -11
\end{array}\right]} \\
& \xrightarrow{R_{4}+3 R_{3}}\left[\begin{array}{rrrrr}
1 & 0 & 3 & 0 & 2 \\
0 & 1 & 0 & -3 & 3 \\
0 & 0 & 3 & -4 & 7 \\
0 & 0 & 0 & -5 & 10
\end{array}\right]
\end{aligned}
$$

Then we found that the coefficient matrix can be row reduced to a triangular form. This means that the linear system is consistent.

Problem 4. Consider

$$
\left[\begin{array}{rrrr}
1 & 2 & 1 & 4 \\
0 & 1 & -1 & 1 \\
1 & 3 & 0 & 0
\end{array}\right] \xrightarrow{R_{3}-R_{1}}\left[\begin{array}{rrrr}
1 & 2 & 1 & 4 \\
0 & 1 & -1 & 1 \\
0 & 1 & -1 & -4
\end{array}\right]
$$

Then row 2 and row 3 of the last matrix yields a linear system

$$
\begin{aligned}
& x_{2}-x_{3}=1 \\
& x_{2}-x_{3}=-4
\end{aligned}
$$

that clearly does not have a solution. The system is inconsistent.
Problem 5. Consider

$$
\left[\begin{array}{rrr}
a & 2 & 1 \\
1 & -3 & -10
\end{array}\right] \xrightarrow{3 R_{1}}\left[\begin{array}{rrr}
3 a & 6 & 3 \\
1 & -3 & -10
\end{array}\right] \xrightarrow{2 R_{2}}\left[\begin{array}{rrr}
3 a & 6 & 3 \\
2 & -6 & -20
\end{array}\right] \xrightarrow{R_{2}+R_{1}}\left[\begin{array}{rrrr}
3 a & 6 & 3 \\
3 a+2 & 0 & -17
\end{array}\right]
$$

(a) If $3 a+2=0$, i.e. $a=-\frac{2}{3}$ the second row becomes $\left[\begin{array}{ccc}0 & 0 & -17\end{array}\right]$. Hence there is no solution, i.e. inconsistent.
(b) If $3 a+2 \neq 0$, then $x_{1}=\frac{-17}{3 a+2}$. Furthermore,

$$
3 a x_{1}+6 x_{2}=3 \Rightarrow x_{2}=\frac{3-3 a x_{1}}{6}
$$

So whenever x_{1} is defined, x_{2} is defined. Therefore, the linear system always has only one solution. To conclude, the linear system cannot have infinite solutions.
(c) We have that $x_{1}=\frac{-17}{3 a+2}$. Since 17 is a prime number, the only way x_{1} is a negative integer, $3 a+2=1$ or 17 . In particular, a is not unique.

