1. Suggested Problems

Problem 1 (2.2.34). Suppose *A* is $n \times n$ and the equation $A\mathbf{x} = \mathbf{b}$ has a solution for each **b** in \mathbb{R}^n . Explain why *A* must be invertible without using Theorem 8. [Hint: Is *A* row equivalent to I_n ?]

Problem 2 (2.2.41). Find the inverses of the matrix by using the algorithm introduced in this section (find the echelon form of $\begin{bmatrix} A & I_3 \end{bmatrix}$).

$$A = \begin{bmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{bmatrix}$$

Problem 3 (2.3.5). Using as few calculation as possible, determine if the following matrix is invertible. Justify your answer.

Problem 4 (2.3.23). Can a square matrix with two identical columns be invertible? Why or why not?

Problem 5 (2.3.29). If the equation $G\mathbf{x} = \mathbf{y}$ has more than one solution for some \mathbf{y} in \mathbb{R}^n , can the columns of G span \mathbb{R}^n ? Why or why not?

Problem 6 (2.2.25). Suppose A and B are $n \times n$, B is invertible, and AB is invertible. Show that A is invertible.

Problem 7 (2.3.35). Show that if *AB* is invertible, so is *A*. You cannot use Theorem 6(b), because you cannot assume that *A* and *B* are invertible. [Hint: There is a matrix W such that ABW = I.]

2. Additional Problems

By Theorem 8, we see that if $AB = I_n$ if and only if $BA = I_n$. This works because we are dealing with *finite* matrices. The following problem shows AB = I may not be same as BA = I for *infinite* matrices. We have used the fact that

{ matrices } \leftrightarrow { linear transformations }

Problem 8. Let *P* denote set of all polynomials of real coefficients with variable *x*. Let $\mathscr{L}(P)$ be the set of all *linear transformations* of *P* to *P*. Namely, it is a function $T : P \to P$ such that

i)
$$T(f+g) = T(f) + T(g)$$
,

ii)
$$T(cf) = cT(f)$$

for all $f, g \in P$ and $c \in \mathbb{R}$. From Calculus, we know that the derivative operator $D(f) = \frac{d}{dx}f$ and the integration operator $I(f) = \int_0^x f(t) dt$ is in $\mathscr{L}(P)$. Let $\mathrm{Id} : P \to P$ be the identity operator $\mathrm{Id}(f) = f$. Prove that $ID = \mathrm{Id}$ but $DI \neq \mathrm{Id}$. **Problem 1.** If $A\mathbf{x} = \mathbf{b}$ has a solution for each \mathbf{b} in \mathbb{R}^n , the linear transformation associated to A is onto, so there is pivot positions in every row. Then its reduced echelon form must have 1 on every diagonal and 0 everywhere else. This is exactly I_n . Since A is row equvalent to I_n , it is invertible.

Problem 2.

$$\begin{bmatrix} 1 & 0 & -2 & 1 & 0 & 0 \\ -3 & 1 & 4 & 0 & 1 & 0 \\ 2 & -3 & 4 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 = R_2 + 3R_1} \begin{bmatrix} 1 & 0 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 3 & 1 & 0 \\ 0 & -3 & 8 & -2 & 0 & 1 \end{bmatrix}$$
$$\xrightarrow{R_3 = R_3 + 3R_2} \begin{bmatrix} 1 & 0 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 3 & 1 & 0 \\ 0 & 1 & -2 & 3 & 1 & 0 \\ 0 & 0 & 2 & 7 & 3 & 1 \end{bmatrix} \xrightarrow{R_1 = R_1 + R_3} \begin{bmatrix} 1 & 0 & 0 & 8 & 3 & 1 \\ 0 & 1 & 0 & 10 & 4 & 1 \\ 0 & 0 & 2 & 7 & 3 & 1 \end{bmatrix}$$
$$\xrightarrow{R_3 = \frac{1}{2}R_3} \begin{bmatrix} 1 & 0 & 0 & 8 & 3 & 1 \\ 0 & 1 & 0 & 10 & 4 & 1 \\ 0 & 0 & 1 & \frac{7}{2} & \frac{3}{2} & \frac{1}{2} \end{bmatrix}$$

Problem 3.

$$\begin{bmatrix} 0 & 3 & -5\\ 1 & 0 & 2\\ -4 & -9 & 7 \end{bmatrix} \xrightarrow{R_3 = R_3 + 4R_2} \begin{bmatrix} 0 & 3 & -5\\ 1 & 0 & 2\\ 0 & -9 & 15 \end{bmatrix}$$

If \mathbf{b}_i denote the *i*th column vector, we have $\mathbf{b}_3 = -\frac{5}{3}\mathbf{b}_2$, i.e. they are scalar multiple of each other. Therefore the set of columns of *A* is not linerally independent. Therefore, *A* is not one-to-one, hence not invertible.

Problem 4. If a square matrix has two identical columns, then the column vectors are not linearly independent. Therefore, the associated linear transformation is not one-to-one. This implies that the matrix is not invertible.

Problem 5. If $G\mathbf{x} = \mathbf{y}$ has more than one solution for some \mathbf{y} in \mathbb{R}^n , then it cannot be invertible. This means that the linear transformation associated to G is not onto, and this implies that columns of G does not span \mathbb{R}^n .

Problem 6. We need to find the inverse of *B*. We start with $AB(AB)^{-1} = I_n$. Since *A* is invertible, we see that $B(AB)^{-1} = A^{-1} \Rightarrow B(AB)^{-1}A = I_n$. Also, $(AB)^{-1}AB = I_n$. So $C = (AB)^{-1}A$ is the inverse of *B*, so *B* is invertible.

Problem 7. This is a simple question once you understand the set up. Since both *D* and *I* are linear, we first show that $DI(a_nx^n) = a_nx^n$.

$$DI(a_n x^n) = D\left(\frac{a_n}{n+1}x^{n+1}\right) = \frac{a_n}{n+1}(n+1)x^n = a_n x_n$$

then

$$DI(f) = DI(a_0 + \cdots + a_n x^n) = DI(a_0) + \cdots + DI(a_n x^n) = a_0 + \cdots + a_n x^n = f = Id(f)$$

On the other hand, consider $f = 1$. Then $ID(1) = I(0) = \int_0^x 0 \, dt = 0 \neq Id(1)$.