1. Suggested Problems

Problem 1 (2.2.34). Suppose A is $n \times n$ and the equation $A \mathbf{x}=\mathbf{b}$ has a solution for each \mathbf{b} in \mathbb{R}^{n}. Explain why A must be invertible without using Theorem 8 . [Hint: Is A row equivalent to I_{n} ?]
Problem 2 (2.2.41). Find the inverses of the matrix by using the algorithm introduced in this section (find the echelon form of $\left[\begin{array}{ll}A & I_{3}\end{array}\right]$).

$$
A=\left[\begin{array}{rrr}
1 & 0 & -2 \\
-3 & 1 & 4 \\
2 & -3 & 4
\end{array}\right]
$$

Problem 3 (2.3.5). Using as few calculation as possible, determine if the following matrix is invertible. Justify your answer.

$$
\left[\begin{array}{rrr}
0 & 3 & -5 \\
1 & 0 & 2 \\
-4 & -9 & 7
\end{array}\right]
$$

Problem 4 (2.3.23). Can a square matrix with two identical columns be invertible? Why or why not?
Problem 5 (2.3.29). If the equation $G \mathbf{x}=\mathbf{y}$ has more than one solution for some \mathbf{y} in \mathbb{R}^{n}, can the columns of G span \mathbb{R}^{n} ? Why or why not?

Problem 6 (2.2.25). Suppose A and B are $n \times n, B$ is invertible, and $A B$ is invertible. Show that A is invertible.

Problem 7 (2.3.35). Show that if $A B$ is invertible, so is A. You cannot use Theorem 6(b), because you cannot assume that A and B are invertible. [Hint: There is a matrix W such that $A B W=I$.]

2. Additional Problems

By Theorem 8, we see that if $A B=I_{n}$ if and only if $B A=I_{n}$. This works because we are dealing with finite matrices. The following problem shows $A B=I$ may not be same as $B A=I$ for infinite matrices. We have used the fact that

$$
\{\text { matrices }\} \leftrightarrow\{\text { linear transformations }\}
$$

Problem 8. Let P denote set of all polynomials of real coefficients with variable x. Let $\mathscr{L}(P)$ be the set of all linear transformations of P to P. Namely, it is a fuction $T: P \rightarrow P$ such that
i) $T(f+g)=T(f)+T(g)$,
ii) $T(c f)=c T(f)$
for all $f, g \in P$ and $c \in \mathbb{R}$. From Calculus, we know that the derivative operator $D(f)=\frac{d}{d x} f$ and the integration operator $I(f)=\int_{0}^{x} f(t) d t$ is in $\mathscr{L}(P)$. Let $\operatorname{Id}: P \rightarrow P$ be the identity operator $\operatorname{Id}(f)=f$. Prove that $I D=\operatorname{Id}$ but $D I \neq \mathrm{Id}$.

Problem 1. If $A \mathbf{x}=\mathbf{b}$ has a solution for each \mathbf{b} in \mathbb{R}^{n}, the linear transformation associated to A is onto, so there is pivot positions in every row. Then its reduced echelon form must have 1 on every diagonal and 0 everywhere else. This is exactly I_{n}. Since A is row equvalent to I_{n}, it is invertible.

Problem 2.

$$
\begin{aligned}
\xrightarrow{R_{3}=R_{3}+3 R_{2}}\left[\begin{array}{rrrrrr}
1 & 0 & -2 & 1 & 0 & 0 \\
-3 & 1 & 4 & 0 & 1 & 0 \\
2 & -3 & 4 & 0 & 0 & 1
\end{array}\right]
\end{aligned} \begin{array}{r}
\xrightarrow[R_{3}=R_{3}-2 R_{1}]{R_{2}=R_{2}+3 R_{1}}\left[\begin{array}{rrrrrr}
1 & 0 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 3 & 1 & 0 \\
0 & 0 & 2 & 7 & 3 & 1
\end{array}\right] \quad\left[\begin{array}{rrrrr}
1 & 0 & -2 & 1 & 0 \\
0 & 1 & -2 & 3 & 1 \\
0 \\
0 & -3 & 8 & -2 & 0 \\
1
\end{array}\right] \\
\xrightarrow{R_{3}=\frac{1}{2} R_{3}}\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 8 & 3 & 1 \\
0 & 1 & 0 & 10 & 4 & 1 \\
0 & 0 & 1 & \frac{7}{2} & \frac{3}{2} & \frac{1}{2}
\end{array}\right]
\end{array}
$$

Problem 3.

$$
\left[\begin{array}{rrr}
0 & 3 & -5 \\
1 & 0 & 2 \\
-4 & -9 & 7
\end{array}\right] \xrightarrow{R_{3}=R_{3}+4 R_{2}}\left[\begin{array}{rrr}
0 & 3 & -5 \\
1 & 0 & 2 \\
0 & -9 & 15
\end{array}\right]
$$

If \mathbf{b}_{i} denote the i th column vector, we have $\mathbf{b}_{3}=-\frac{5}{3} \mathbf{b}_{2}$, i.e. they are scalar multiple of each other. Therefore the set of columns of A is not lineraly independent. Therefore, A is not one-to-one, hence not invertible.

Problem 4. If a square matrix has two identical columns, then the column vectors are not linearly independent. Therefore, the associated linear transformation is not one-to-one. This implies that the matrix is not invertible.

Problem 5. If $G \mathbf{x}=\mathbf{y}$ has more than one solution for some \mathbf{y} in \mathbb{R}^{n}, then it cannot be invertible. This means that the linear transformation associated to G is not onto, and this implies that columns of G does not span \mathbb{R}^{n}.
Problem 6. We need to find the inverse of B. We start with $A B(A B)^{-1}=I_{n}$. Since A is invertible, we see that $B(A B)^{-1}=A^{-1} \Rightarrow B(A B)^{-1} A=I_{n}$. Also, $(A B)^{-1} A B=I_{n}$. So $C=(A B)^{-1} A$ is the inverse of B, so B is invertible.

Problem 7. This is a simple question once you understand the set up. Since both D and I are linear, we first show that $D I\left(a_{n} x^{n}\right)=a_{n} x^{n}$.

$$
D I\left(a_{n} x^{n}\right)=D\left(\frac{a_{n}}{n+1} x^{n+1}\right)=\frac{a_{n}}{n+1}(n+1) x^{n}=a_{n} x_{n}
$$

then

$$
D I(f)=D I\left(a_{0}+\cdots a_{n} x^{n}\right)=D I\left(a_{0}\right)+\cdots+D I\left(a_{n} x^{n}\right)=a_{0}+\cdots+a_{n} x^{n}=f=\operatorname{Id}(f)
$$

On the other hand, consider $f=1$. Then $I D(1)=I(0)=\int_{0}^{x} 0 d t=0 \neq \operatorname{Id}(1)$.

