1. Suggested Problems

Problem 1 (3.1.9). Compute the determinants by cofactor expansions. At each step, choose a row or column that involves the least amount of computation.

$$
\left|\begin{array}{rrrr}
4 & 0 & 0 & 5 \\
1 & 7 & 2 & -5 \\
3 & 0 & 0 & 0 \\
8 & 3 & 1 & 7
\end{array}\right|
$$

Problem 2 (3.1.38). Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and let k be a scalar. Find a formula that relates det $k A$ to k and $\operatorname{det} A$.
Problem 3 (3.2.21). Use determinants to find out if the matrix is invertible.

$$
\left[\begin{array}{lll}
2 & 6 & 0 \\
1 & 3 & 2 \\
3 & 9 & 2
\end{array}\right]
$$

Problem 4 (3.2.29). (T/F) If the columns of A are linearly dependent, then $\operatorname{det} A=0$.
Problem 5 (3.2.32). (T/F) The determinant of A is the product of the pivots in any echelon form U of A, multiplied by $(-1)^{r}$, where r is the number of row interchanges made during row reduction form A to U.

Problem 6 (3.2.45). Let A and B be 3×3 matrices, with $\operatorname{det} A=-2$ and $\operatorname{det} B=3$. Use properties of determinants (in the text) to compute:
a) $\operatorname{det} A B$
b) $\operatorname{det} 5 A$
c) $\operatorname{det} B^{T}$
d) $\operatorname{det} A^{-1}$
e) $\operatorname{det} A^{3}$

2. Additional Problem

The definition of determinant may seem unnatural, but it actually arise from nice properties of (bi)linear transformations. To do this, we consider matrices as tuples of column vectors. For instance, 2×2 matrix A is simply a pair $\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right)$ of vectors in \mathbb{R}^{2}.

Problem 7. Let $T: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a map that inputs a pair of vectors in \mathbb{R}^{2} and outputs a scalar \mathbb{R}. Suppose
(a) T is bilinear, i.e.
$T\left(a \mathbf{x}_{1}+b \mathbf{x}_{2}, \mathbf{y}\right)=a T\left(\mathbf{x}_{1}, \mathbf{y}\right)+b T\left(\mathbf{x}_{2}, \mathbf{y}\right)$ and $T\left(\mathbf{x}, a \mathbf{y}_{1}+b \mathbf{y}_{2}\right)=a T\left(\mathbf{x}, \mathbf{y}_{1}\right)+b T\left(\mathbf{x}, \mathbf{y}_{2}\right)$
(b) T is alternating, i.e.

$$
T(\mathbf{x}, \mathbf{x})=0
$$

for all $\mathbf{x} \in \mathbb{R}^{2}$
(c) $T\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)=1$.

We can think of T as a map from the set $M_{2 \times 2}(\mathbb{R})$ of 2×2 matrices as follows: write $A=\left[\begin{array}{ll}\mathbf{a}_{1} & \mathbf{a}_{2}\end{array}\right]$ where \mathbf{a}_{i} are column vectors of A. Then $T(A):=T\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right)$.
(i) Prove that $T(\mathbf{x}, \mathbf{y})=-T(\mathbf{y}, \mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$. (Hint: $\left.T(\mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y})=0\right)$
(ii) Prove that $T(A)=\operatorname{det}(A)$.

Problem 1. We choose row 3 for our cofactor expansion. Then

$$
\left|\begin{array}{rrrr}
4 & 0 & 0 & 5 \\
1 & 7 & 2 & -5 \\
3 & 0 & 0 & 0 \\
8 & 3 & 1 & 7
\end{array}\right|=(-1)^{3+3} \cdot 3 \cdot\left|\begin{array}{rrr}
0 & 0 & 5 \\
7 & 2 & -5 \\
3 & 1 & 7
\end{array}\right|
$$

Next we choose row 1 , then

$$
\left|\begin{array}{rrr}
0 & 0 & 5 \\
7 & 2 & -5 \\
3 & 1 & 7
\end{array}\right|=(-1)^{1+3} \cdot 5 \cdot\left|\begin{array}{ll}
7 & 2 \\
3 & 1
\end{array}\right|=5 \cdot(7-6)=5
$$

To conclude, we have

$$
\left|\begin{array}{rrrr}
4 & 0 & 0 & 5 \\
1 & 7 & 2 & -5 \\
3 & 0 & 0 & 0 \\
8 & 3 & 1 & 7
\end{array}\right|=3 \cdot 5=15
$$

Problem 2. We have $\operatorname{det}(A)=a d-b c$.

$$
\operatorname{det}(k A)=\left|\begin{array}{ll}
k a & k b \\
k c & k d
\end{array}\right|=k^{2} a d-k^{2} b c=k^{2}(a d-b c)=k^{2} \operatorname{det}(A)
$$

Problem 3. We have

$$
\left|\begin{array}{lll}
2 & 6 & 0 \\
1 & 3 & 2 \\
3 & 9 & 2
\end{array}\right|=2 \cdot(6-18)-6 \cdot(2-6)+0 \cdot(9-9)=-24+24=0
$$

Therefore the matrix is not invertible.

Problem 4. True

Columns of A is linearly dependent $\Rightarrow A$ is not one-to-one $\Rightarrow A$ is not invertible $\Rightarrow \operatorname{det}(A)=0$.

Problem 5. False

Consider

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

Since the matrix is already in echelon form,

$$
(-1)^{r} \cdot(\text { product of pivots })=(-1)^{0} \cdot 1=1
$$

However, $\operatorname{det}(A)=0$. The formula is true only for invertible matrices, i.e. matrices with $\operatorname{det}(A) \neq 0$.

Problem 6.

(a) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=-6$,
(b) $\operatorname{det}(5 A)=5^{3} \operatorname{det}(A)=-250$,
(c) $\operatorname{det}\left(B^{T}\right)=\operatorname{det}(B)=3$,
(d) Since $\operatorname{det}(A) \neq 0, A$ is invertible. Then $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}=-\frac{1}{2}$.
(e) $\operatorname{det}\left(A^{3}\right)=\operatorname{det}(A)^{3}=-8$.

Problem 7.

(i) we have

$$
0=T(\mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y})=T(\mathbf{x}, \mathbf{x}+\mathbf{y})+T(\mathbf{y}+\mathbf{x}+\mathbf{y})=T(\mathbf{x}, \mathbf{x})+T(\mathbf{x}, \mathbf{y})+T(\mathbf{y}, \mathbf{x})+T(\mathbf{y}, \mathbf{y})
$$

Hence

$$
T(\mathbf{x}, \mathbf{y})=-T(\mathbf{y}, \mathbf{x})
$$

(ii) Let

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{a}_{1} & \mathbf{a}_{2}
\end{array}\right]
$$

If $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, we have $\mathbf{a}_{1}=a \mathbf{e}_{1}+c \mathbf{e}_{2}$ and $\mathbf{a}_{2}=b \mathbf{e}_{1}+c \mathbf{e}_{2}$. Then

$$
\begin{aligned}
T\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right) & \left.=T\left(a \mathbf{e}_{1}+c \mathbf{e}_{2}, b \mathbf{e}_{1}+d \mathbf{e}_{2}\right)=a T\left(\mathbf{e}_{1}, b \mathbf{e}_{1}+d \mathbf{e}_{2}\right)+c T\left(\mathbf{e}_{2}, b \mathbf{e}_{1}\right)+d \mathbf{e}_{2}\right) \\
& =\overrightarrow{a b T\left(\mathbf{e}_{1}, \mathbf{e}_{1}\right)}{ }^{0}+a d T\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)+b c T\left(\mathbf{e}_{2}, \mathbf{e}_{1}\right)+c d T\left(\mathbf{e}_{2}, \mathbf{e}_{2}\right) \\
& =a d T\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)+b c T\left(\mathbf{e}_{2}, \mathbf{e}_{1}\right) \\
& =a d-b c=\operatorname{det}(A)
\end{aligned}
$$

