1. Suggested Problems

Problem 1 (3.1.9). Compute the determinants by cofactor expansions. At each step, choose a row or column that involves the least amount of computation.

$$\begin{array}{ccccccc} 4 & 0 & 0 & 5 \\ 1 & 7 & 2 & -5 \\ 3 & 0 & 0 & 0 \\ 8 & 3 & 1 & 7 \end{array}$$

Problem 2 (3.1.38). Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and let k be a scalar. Find a formula that relates det kA to k and det A.

Problem 3 (3.2.21). Use determinants to find out if the matrix is invertible.

2	6	0
1	3	2
3	9	2

Problem 4 (3.2.29). (T/F) If the columns of A are linearly dependent, then det A = 0.

Problem 5 (3.2.32). **(T/F)** The determinant of *A* is the product of the pivots in any echelon form *U* of *A*, multiplied by $(-1)^r$, where *r* is the number of row interchanges made during row reduction form *A* to *U*.

Problem 6 (3.2.45). Let *A* and *B* be 3×3 matrices, with det A = -2 and det B = 3. Use properties of determinants (in the text) to compute:

a) det <i>AB</i>	b) det 5 <i>A</i>	c) det B^T
d) det A^{-1}	e) det A^3	

2. Additional Problem

The definition of determinant may seem unnatural, but it actually arise from *nice* properties of (bi)linear transformations. To do this, we consider matrices as tuples of column vectors. For instance, 2×2 matrix A is simply a pair ($\mathbf{a}_1, \mathbf{a}_2$) of vectors in \mathbb{R}^2 .

Problem 7. Let $T : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ be a map that inputs a pair of vectors in \mathbb{R}^2 and outputs a scalar \mathbb{R} . Suppose

(a) *T* is **bilinear**, i.e.

$$T(a\mathbf{x}_1 + b\mathbf{x}_2, \mathbf{y}) = aT(\mathbf{x}_1, \mathbf{y}) + bT(\mathbf{x}_2, \mathbf{y}) \text{ and } T(\mathbf{x}, a\mathbf{y}_1 + b\mathbf{y}_2) = aT(\mathbf{x}, \mathbf{y}_1) + bT(\mathbf{x}, \mathbf{y}_2)$$

(b) *T* is **alternating**, i.e.

$$T(\mathbf{x}, \mathbf{x}) = 0$$

for all $\mathbf{x} \in \mathbb{R}^2$

(c) $T(\mathbf{e}_1, \mathbf{e}_2) = 1$.

We can think of *T* as a map from the set $M_{2\times 2}(\mathbb{R})$ of 2×2 matrices as follows: write $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 \end{bmatrix}$ where \mathbf{a}_i are column vectors of *A*. Then $T(A) := T(\mathbf{a}_1, \mathbf{a}_2)$.

- (i) Prove that $T(\mathbf{x}, \mathbf{y}) = -T(\mathbf{y}, \mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$. (Hint: $T(\mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y}) = 0$)
- (ii) Prove that $T(A) = \det(A)$.

Problem 1. We choose row 3 for our cofactor expansion. Then

$$\begin{vmatrix} 4 & 0 & 0 & 5 \\ 1 & 7 & 2 & -5 \\ 3 & 0 & 0 & 0 \\ 8 & 3 & 1 & 7 \end{vmatrix} = (-1)^{3+3} \cdot 3 \cdot \begin{vmatrix} 0 & 0 & 5 \\ 7 & 2 & -5 \\ 3 & 1 & 7 \end{vmatrix}$$

Next we choose row 1, then

$$\begin{vmatrix} 0 & 0 & 5 \\ 7 & 2 & -5 \\ 3 & 1 & 7 \end{vmatrix} = (-1)^{1+3} \cdot 5 \cdot \begin{vmatrix} 7 & 2 \\ 3 & 1 \end{vmatrix} = 5 \cdot (7-6) = 5$$

To conclude, we have

$$\begin{vmatrix} 4 & 0 & 0 & 5 \\ 1 & 7 & 2 & -5 \\ 3 & 0 & 0 & 0 \\ 8 & 3 & 1 & 7 \end{vmatrix} = 3 \cdot 5 = 15$$

Problem 2. We have det(A) = ad - bc.

$$\det(kA) = \begin{vmatrix} ka & kb \\ kc & kd \end{vmatrix} = k^2 ad - k^2 bc = k^2 (ad - bc) = k^2 \det(A)$$

Problem 3. We have

$$\begin{vmatrix} 2 & 6 & 0 \\ 1 & 3 & 2 \\ 3 & 9 & 2 \end{vmatrix} = 2 \cdot (6 - 18) - 6 \cdot (2 - 6) + 0 \cdot (9 - 9) = -24 + 24 = 0$$

Therefore the matrix is not invertible.

Problem 4. True

Columns of A is linearly dependent \Rightarrow A is not one-to-one \Rightarrow A is not invertible \Rightarrow det(A) = 0.

Problem 5. False

Consider

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Since the matrix is already in echelon form,

$$(-1)^r \cdot (\text{product of pivots}) = (-1)^0 \cdot 1 = 1$$

However, det(A) = 0. The formula is true only for invertible matrices, i.e. matrices with $det(A) \neq 0$. Problem 6.

(a)
$$det(AB) = det(A)det(B) = -6$$
,

(b) $det(5A) = 5^3 det(A) = -250$,

(c)
$$\det(B^T) = \det(B) = 3$$
,

- (d) Since $det(A) \neq 0$, A is invertible. Then $det(A^{-1}) = \frac{1}{det(A)} = -\frac{1}{2}$.
- (e) $det(A^3) = det(A)^3 = -8$.

Problem 7.

(i) we have

 $0 = T(\mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y}) = T(\mathbf{x}, \mathbf{x} + \mathbf{y}) + T(\mathbf{y} + \mathbf{x} + \mathbf{y}) = T(\mathbf{x}, \mathbf{x}) + T(\mathbf{x}, \mathbf{y}) + T(\mathbf{y}, \mathbf{x}) + T(\mathbf{y}, \mathbf{y})$ Hence

$$T(\mathbf{x}, \mathbf{y}) = -T(\mathbf{y}, \mathbf{x})$$

(ii) Let

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 \end{bmatrix}$$

If $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, we have $\mathbf{a}_1 = a\mathbf{e}_1 + c\mathbf{e}_2$ and $\mathbf{a}_2 = b\mathbf{e}_1 + c\mathbf{e}_2$. Then
$$T(\mathbf{a}_1, \mathbf{a}_2) = T(a\mathbf{e}_1 + c\mathbf{e}_2, b\mathbf{e}_1 + d\mathbf{e}_2) = aT(\mathbf{e}_1, b\mathbf{e}_1 + d\mathbf{e}_2) + cT(\mathbf{e}_2, b\mathbf{e}_1) + d\mathbf{e}_2)$$
$$= \underline{abT}(\mathbf{e}_1, \mathbf{e}_1)^{\bullet 0} + adT(\mathbf{e}_1, \mathbf{e}_2) + bcT(\mathbf{e}_2, \mathbf{e}_1) + \underline{cdT}(\mathbf{e}_2, \mathbf{e}_2)^{\bullet 0}$$
$$= adT(\mathbf{e}_1, \mathbf{e}_2) + bcT(\mathbf{e}_2, \mathbf{e}_1)$$
$$= ad - bc = \det(A)$$