\qquad

1. Suggested Problems

In Problem 1-4, determine if the given set is a subspace of \mathbb{P}_{n} for an appropriate value of n. Justify your answers.
Problem 1 (4.1.5). All polynomials of the form $\boldsymbol{p}(t)=a t^{2}$ where a is in \mathbb{R}.
Problem 2 (4.1.6). All polynomials of the form $\boldsymbol{p}(t)=a+t^{2}$, where a is in \mathbb{R}.
Problem 3 (4.1.7). All polynomials of degree at most 3, with integers as coefficients.
Problem 4 (4.1.8). All polynomials in \mathbb{P}_{n} such that $\boldsymbol{p}(0)=0$.
Problem 5 (4.1.11). Let W be the set of all vectors of the form

$$
\left[\begin{array}{c}
5 b+2 c \\
b \\
c
\end{array}\right]
$$

where b and c are arbitrary. Find vectors \mathbf{u} and \mathbf{v} such that $W=\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$. Why does this show that W is a subspace of \mathbb{R}^{3}.
Problem 6 (4.1.16). Let W be the set of all vectors of the form shown below, where a, b, and c represent arbitrary real numbers. In each case, either find a set S of vectors that span W or give an example to show that W is not a vector space.

$$
\left[\begin{array}{c}
-a+1 \\
a-6 b \\
2 b+a
\end{array}\right]
$$

Problem 7 (4.2.2). Determine if $\mathbf{w}=\left[\begin{array}{r}5 \\ -3 \\ 2\end{array}\right]$ is in Nul A, where

$$
A=\left[\begin{array}{ccc}
5 & 21 & 19 \\
13 & 23 & 2 \\
8 & 14 & 1
\end{array}\right]
$$

In Problems 8-9, find an explicit description of $\mathrm{Nul} A$ by listing vectors that span the null space.
Problem 8 (4.2.3).

$$
A=\left[\begin{array}{rrrr}
1 & 3 & 5 & 0 \\
0 & 1 & 4 & -2
\end{array}\right]
$$

Problem 9 (4.2.4).

$$
A=\left[\begin{array}{rrrr}
1 & -6 & 4 & 0 \\
0 & 0 & 2 & 0
\end{array}\right]
$$

For Problems 1-4, the given set will be called W.

Problem 1.

(a) $0=0 \cdot t^{2} \in W$.
(b) Given arbitrary $a_{1} t^{2}, a_{2} t^{2} \in W, a_{1} t^{2}+a_{2} t^{2}=\left(a_{1}+a_{2}\right) t^{2} \in W$.
(c) Given arbitrary $a t^{2} \in W$ and $c \in \mathbb{R}, c \cdot\left(a t^{2}\right)=(a c) t^{2} \in W$.

Therefore, W is a subspace of \mathbb{P}_{n} for $n \geq 2$.
Problem 2. Since all elements in W has nonzero coeffient for the t^{2}-term, 0 is not in W. Therefore, W is not a subspace of any \mathbb{P}_{n}.
Problem 3. Consider $t \in W$. Even though $\sqrt{2} \in \mathbb{R}, \sqrt{2} \cdot t=\sqrt{2} t$ is not in W. Therefore, W is not closed under scalar multiplication. W is not a subspace of any \mathbb{P}_{n}.

Problem 4.

(a) Let 0 be the zero polynomial. Then by definition $0(0)=0$, so $0 \in W$.
(b) Let $p_{1}, p_{2} \in W$. Then

$$
\left(p_{1}+p_{2}\right)(0)=p_{1}(0)+p_{2}(0)=0+0=0
$$

Therefore, $p_{1}+p_{2} \in W$.
(c) Let $p \in W$ and $c \in \mathbb{R}$. Then $(c p)(0)=c \cdot p(0)=c \cdot 0=0$. In particular, $c p \in W$.

This shows that W is a subspace of \mathbb{P}_{n}.
Problem 5. Any elements in W is of the form

$$
\left[\begin{array}{r}
5 b+2 c \\
b \\
c
\end{array}\right]=b\left[\begin{array}{l}
5 \\
1 \\
0
\end{array}\right]+c\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

Therefore, $W=\operatorname{Span}\left\{\left[\begin{array}{l}5 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]\right\}$. By Theorem 1 of Chapter $4, W$ is a subspace of \mathbb{R}^{3}.
Problem 6. Suppose zero vector is in W. Then there exists $a, b \in \mathbb{R}$ such that

$$
\left[\begin{array}{c}
-a+1 \\
a-6 b \\
2 b+a
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

By the first entry, we get $a=1$. Then by second entry $b=\frac{1}{6}$. However,

$$
2 b+a=\frac{1}{3}+1=\frac{4}{3} \neq 0
$$

Therefore, the zero vector is not in W. This shows that W is not a subspace of \mathbb{R}^{3}.
Problem 7. To check $\mathbf{w} \in \operatorname{Nul} A$. We simply need to check that $A \mathbf{w}=0$ which is indeed true.

$$
A \mathbf{w}=\left[\begin{array}{ccc}
5 & 21 & 19 \\
13 & 23 & 2 \\
8 & 14 & 1
\end{array}\right]\left[\begin{array}{r}
5 \\
-3 \\
2
\end{array}\right]=\left[\begin{array}{r}
25-63+38 \\
65-69+4 \\
40-42+2
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

For problem 8-9, we first find general solutions to the associated homogeneous linear systems.
Problem 8. Since A is already echelon form, we know that x_{3} and x_{4} are free variables, and we can write the general solutions as

$$
\left[\begin{array}{r}
-3 x_{2}-5 x_{3} \\
-4 x_{3}+2 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
12 x_{3}-6 x_{4}-5 x_{3} \\
-4 x_{3}+2 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
7 x_{3}-6 x_{4} \\
-4 x_{3}+2 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{r}
7 \\
-4 \\
0 \\
1
\end{array}\right]+x_{4}\left[\begin{array}{r}
-6 \\
2 \\
1 \\
0
\end{array}\right]
$$

In particular,

$$
\text { Nul } A=\operatorname{Span}\left\{\left[\begin{array}{r}
7 \\
-4 \\
0 \\
1
\end{array}\right],\left[\begin{array}{r}
-6 \\
2 \\
1 \\
0
\end{array}\right]\right\}
$$

Problem 9. By the second row, we have $x_{3}=0$. Then x_{2} and x_{4} are free variables with

$$
\left[\begin{array}{r}
6 x_{2}-4 x_{3} \\
x_{2} \\
0 \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
6 x_{2} \\
x_{2} \\
0 \\
x_{4}
\end{array}\right]=x_{2}\left[\begin{array}{l}
6 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Therefore,

$$
\operatorname{Nul} A=\operatorname{Span}\left\{\left[\begin{array}{l}
6 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

