Worksheet 14	Name:	
MATH 240 (Spring 2024)	Section:	0111(12PM-1PM) / 0121(1PM-2PM)
Mar 14th, 2024	TA:	Shin Eui Song

1. Suggested Problems

Problem 1 (4.3.1, 4.3.3, 4.3.5, 4.3.6). Determine which sets are bases for \mathbb{R}^3 . Of the sets that are not bases, determine which ones are linearly independendent and which ones span \mathbb{R}^3 . Justify your answers.

a)		b)	
	$\begin{bmatrix} 1\\0\\0\end{bmatrix}, \begin{bmatrix} 1\\1\\0\end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1\end{bmatrix}$		$\begin{bmatrix} 1\\0\\-2\end{bmatrix}, \begin{bmatrix} 3\\2\\-4\end{bmatrix}, \begin{bmatrix} -3\\-5\\1\end{bmatrix}$
c)	$\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} -2 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$	d)	$\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} -4 \end{bmatrix}$
	$\begin{bmatrix} -3 \\ 0 \end{bmatrix}, \begin{bmatrix} 9 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -3 \\ 5 \end{bmatrix}$		$\begin{bmatrix} 2\\-3 \end{bmatrix}, \begin{bmatrix} -5\\6 \end{bmatrix}$

Problem 2 (4.3.16). Find a basis for the space spanned by the given vectors, v_1, \ldots, v_5 .

[1]		$\left[-2\right]$		6		5		[0]	
0		1		-1		-3		3	
0	,	-1	,	2	,	3	,	-1	
1		1		-1		-4		1	

Problem 3 (4.3.26). (T/F) A basis is a linearly independent set that is as large as possible.

Problem 4 (4.3.30). (T/F) If *B* is an echelon form of a matrix *A*, then the pivot columns of *B* form a basis for Col A.

Problem 5 (4.3.32). (T/F) If A and B are row equivalent, then their row spaces are the same.

2. Additional Problems

Problem 6 (4.4.3). Find the vector x determined by the given coordinate vector $[x]_{\mathscr{B}}$ and the given basis \mathscr{B} .

$$\mathscr{B} = \left\{ \begin{bmatrix} 1\\-4\\3 \end{bmatrix}, \begin{bmatrix} 5\\2\\-2 \end{bmatrix}, \begin{bmatrix} 4\\-7\\0 \end{bmatrix} \right\}, \quad [x]_{\mathscr{B}} = \begin{bmatrix} 3\\0\\-1 \end{bmatrix}$$

Problem 7 (4.4.5). Find the coordinate vector $[x]_{\mathscr{B}}$ of x relative to the basis \mathscr{B} where

$$b_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}, b_2 = \begin{bmatrix} 2 \\ -5 \end{bmatrix}, x = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

Problem 1.

a) The matrix whose column vectors are given in the problem is

$$\begin{bmatrix} \mathbf{1} & 1 & 1 \\ 0 & \mathbf{1} & 1 \\ 0 & 0 & \mathbf{1} \end{bmatrix}$$

This matrix has pivots in every row and every column. Therefore, this set is a basis for \mathbb{R}^3 .

b) The matrix whose column vectors are given in the problem is

[1	3	-3		[1	3	-3		[1	3	-3
0	2	-5	\rightarrow	0	2	-5	\rightarrow	0	2	-5
$\lfloor -2 \rfloor$	-4	1		0	2	-5		0	0	0

The matrix does not have pivots every row, so the set is not a basis.

- c) The set contains four vectors in \mathbb{R}^3 . This means that the set is linearly dependent, and this means that the set is not a basis.
- d) The matrix whose column vectors are given in the problem is

[1	-4]		[1	-4		$\lceil 1 \rceil$	-4
2	-5	\rightarrow	0	3	\rightarrow	0	3
$\lfloor -3 \rfloor$	6		0	-6		0	0

Since every row does not have a pivot, the set is not a basis.

Problem 2. We reduce the following matrix to echelon form to find the pivot columns.

1	-2	6	5	0	1	-2	6	5	0		1	-2	6	5	0
0	1	$^{-1}$	-3	3	0	1	$^{-1}$	-3	3		0	1	$^{-1}$	-3	3
0	-1	2	3	-1	$\rightarrow 0$	-1	2	3	-1	\rightarrow	0	0	1	0	2
1	1	$^{-1}$	-4	1	0	3	-7	-9	1		0	0	-4	0	-8
-				-	-				-		1	-2	6	5	0]
										,	0	1	-1	-3	3
										\rightarrow	0	0	1	0	2
											0	0	0	0	0

The pivot columns are column 1, 2, and 3. Therefore, $\{v_1, v_2, v_3\}$ form a basis for the space. **Problem 3.** This is **True**. Read page 228 of the textbook.

Problem 4. Consider the matrix

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \to B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

Then *B* is an echelon form of *A* and $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is the pivot column of *B*. However,

$$\begin{bmatrix} 1\\ 0 \end{bmatrix} \notin \operatorname{Col} A = \operatorname{Span} \left\{ \begin{bmatrix} 1\\ 1 \end{bmatrix} \right\} = \left\{ \begin{bmatrix} a\\ a \end{bmatrix} \middle| a \in \mathbb{R} \right\}$$

So this is False.

Problem 5. This is True. See Theorem 7 of Chapter 4.Problem 6.

$$[x]_{\mathscr{B}} = 3\begin{bmatrix}1\\-4\\3\end{bmatrix} + 0 \cdot \begin{bmatrix}5\\2\\-2\end{bmatrix} - \begin{bmatrix}4\\-7\\0\end{bmatrix} = \begin{bmatrix}-1\\-5\\9\end{bmatrix}$$

Problem 7. We need to solve a linear system whose augmented matrix is

$$\begin{bmatrix} 1 & 2 & -2 \\ -3 & -5 & 1 \end{bmatrix} \to \begin{bmatrix} 1 & 2 & -2 \\ 0 & 1 & -5 \end{bmatrix}$$

Therefore $x_2 = -5$ and $x_1 = 8$. We thus have

$$[x]_{\mathscr{B}} = \begin{bmatrix} 8\\-5 \end{bmatrix}$$