1. Suggested Problems

Problem 1 (4.3.1, 4.3.3, 4.3.5, 4.3.6). Determine which sets are bases for \mathbb{R}^{3}. Of the sets that are not bases, determine which ones are linearly independendent and which ones span \mathbb{R}^{3}. Justify your answers.
a)

$$
\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

b)

$$
\left[\begin{array}{r}
1 \\
0 \\
-2
\end{array}\right],\left[\begin{array}{r}
3 \\
2 \\
-4
\end{array}\right],\left[\begin{array}{r}
-3 \\
-5 \\
1
\end{array}\right]
$$

d)

$$
\left[\begin{array}{r}
1 \\
2 \\
-3
\end{array}\right],\left[\begin{array}{r}
-4 \\
-5 \\
6
\end{array}\right]
$$

Problem 2 (4.3.16). Find a basis for the space spanned by the given vectors, v_{1}, \ldots, v_{5}.

$$
\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{r}
-2 \\
1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{r}
6 \\
-1 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{r}
5 \\
-3 \\
3 \\
-4
\end{array}\right],\left[\begin{array}{r}
0 \\
3 \\
-1 \\
1
\end{array}\right]
$$

Problem 3 (4.3.26). (T/F) A basis is a linearly independent set that is as large as possible.
Problem 4 (4.3.30). (T/F) If B is an echelon form of a matrix A, then the pivot columns of B form a basis for $\mathrm{Col} A$.
Problem 5 (4.3.32). (T/F) If A and B are row equivalent, then their row spaces are the same.

2. Additional Problems

Problem 6 (4.4.3). Find the vector x determined by the given coordinate vector $[x]_{\mathscr{B}}$ and the given basis \mathscr{B}.

$$
\mathscr{B}=\left\{\left[\begin{array}{r}
1 \\
-4 \\
3
\end{array}\right],\left[\begin{array}{r}
5 \\
2 \\
-2
\end{array}\right],\left[\begin{array}{r}
4 \\
-7 \\
0
\end{array}\right]\right\}, \quad[x]_{\mathscr{B}}=\left[\begin{array}{r}
3 \\
0 \\
-1
\end{array}\right]
$$

Problem 7 (4.4.5). Find the coordinate vector $[x]_{\mathscr{B}}$ of x relative to the basis \mathscr{B} where

$$
b_{1}=\left[\begin{array}{r}
1 \\
-3
\end{array}\right], b_{2}=\left[\begin{array}{r}
2 \\
-5
\end{array}\right], x=\left[\begin{array}{r}
-2 \\
1
\end{array}\right]
$$

Problem 1.

a) The matrix whose column vectors are given in the problem is

$$
\left[\begin{array}{lll}
\mathbf{1} & 1 & 1 \\
0 & \mathbf{1} & 1 \\
0 & 0 & \mathbf{1}
\end{array}\right]
$$

This matrix has pivots in every row and every column. Therefore, this set is a basis for \mathbb{R}^{3}.
b) The matrix whose column vectors are given in the problem is

$$
\left[\begin{array}{rrr}
1 & 3 & -3 \\
0 & 2 & -5 \\
-2 & -4 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 3 & -3 \\
0 & 2 & -5 \\
0 & 2 & -5
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
\mathbf{1} & 3 & -3 \\
0 & \mathbf{2} & -5 \\
0 & 0 & 0
\end{array}\right]
$$

The matrix does not have pivots every row, so the set is not a basis.
c) The set contains four vectors in \mathbb{R}^{3}. This means that the set is linearly dependent, and this means that the set is not a basis.
d) The matrix whose column vectors are given in the problem is

$$
\left[\begin{array}{rr}
1 & -4 \\
2 & -5 \\
-3 & 6
\end{array}\right] \rightarrow\left[\begin{array}{rr}
1 & -4 \\
0 & 3 \\
0 & -6
\end{array}\right] \rightarrow\left[\begin{array}{rr}
\mathbf{1} & -4 \\
0 & \mathbf{3} \\
0 & 0
\end{array}\right]
$$

Since every row does not have a pivot, the set is not a basis.
Problem 2. We reduce the following matrix to echelon form to find the pivot columns.

$$
\left[\begin{array}{rrrrr}
1 & -2 & 6 & 5 & 0 \\
0 & 1 & -1 & -3 & 3 \\
0 & -1 & 2 & 3 & -1 \\
1 & 1 & -1 & -4 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrrr}
1 & -2 & 6 & 5 & 0 \\
0 & 1 & -1 & -3 & 3 \\
0 & -1 & 2 & 3 & -1 \\
0 & 3 & -7 & -9 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrrr}
1 & -2 & 6 & 5 & 0 \\
0 & 1 & -1 & -3 & 3 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & -4 & 0 & -8
\end{array}\right]
$$

The pivot columns are column 1,2 , and 3 . Therefore, $\left\{v_{1}, v_{2}, v_{3}\right\}$ form a basis for the space.
Problem 3. This is True. Read page 228 of the textbook.
Problem 4. Consider the matrix

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \rightarrow B=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]
$$

Then B is an echelon form of A and $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is the pivot column of B. However,

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right] \notin \operatorname{Col} A=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}=\left\{\left.\left[\begin{array}{l}
a \\
a
\end{array}\right] \right\rvert\, a \in \mathbb{R}\right\}
$$

So this is False.
Problem 5. This is True. See Theorem 7 of Chapter 4.

Problem 6.

$$
[x]_{\mathscr{B}}=3\left[\begin{array}{r}
1 \\
-4 \\
3
\end{array}\right]+0 \cdot\left[\begin{array}{r}
5 \\
2 \\
-2
\end{array}\right]-\left[\begin{array}{r}
4 \\
-7 \\
0
\end{array}\right]=\left[\begin{array}{r}
-1 \\
-5 \\
9
\end{array}\right]
$$

Problem 7. We need to solve a linear system whose augmented matrix is

$$
\left[\begin{array}{rrr}
1 & 2 & -2 \\
-3 & -5 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 2 & -2 \\
0 & 1 & -5
\end{array}\right]
$$

Therefore $x_{2}=-5$ and $x_{1}=8$. We thus have

$$
[x]_{\mathscr{B}}=\left[\begin{array}{r}
8 \\
-5
\end{array}\right]
$$

