1. Suggested Problems

Problem 1 (4.4.7). Find the coordinate vector $[x]_{\mathscr{B}}$ of x relative to the given basis $\mathscr{B} = \{b_1, \ldots, b_n\}$ where

	1			-3			2			8	
$b_1 =$	-1	,	$b_2 =$	4	,	$b_3 =$	-2	,	x =	-9	
	-3			9			4			6	

Problem 2 (4.4.31). Use coordinate vectors to test the linear independence of the sets of polynomials. Explain your work.

$$\{1+2t^3, 2+t-3t^2, -t+2t^2-t^3\}$$

Problem 3. Determine whether the sets of polynomials form a basis for \mathbb{P}_3 . Justify your conclusions.

$$\{3+7t, 5+t-2t^3, t-2t^2, 1+16t-6t^2+2t^3\}$$

Problem 4 (4.5.6). For the following subspace, (a) find a basis, and (b) state the dimension.

$$\left\{ \begin{bmatrix} 3a+6b-c\\ 6a-2b-2c\\ -9a+5b+3c\\ -3a+b+c \end{bmatrix} : a,b,c \text{ in } \mathbb{R} \right\}$$

Problem 5 (4.5.9). Find the dimension of the subspace spanned by the given vectors

[1]		$\boxed{3}$		9		[-7]
0	,	1	,	4	,	-3
2		1		-2		

Problem 6 (4.5.19). **(T/F)** A plane in \mathbb{R}^3 is a two-dimensional subspace of \mathbb{R}^3 .

Problem 7 (4.5.22). **(T/F)** The dimensions of the row space and the column space of A are the same, even if A is not square.

Problem 8 (4.5.23). (T/F) If *B* is any echelon form of *A*, then the pivot columns of *B* form a basis for the column space of *A*.

Problem 1. We need to solve a linear system whose augmented matrix is

[1	-3	2	8		[1	-3	2	8
-1	4	-2	-9	\rightarrow	0	1	0	-1
-3	9	4	6		0	0	10	30

Then $10x_3 = 30 \Rightarrow x_3 = 10$, $x_2 = -1$. Since $x_1 - 3x_2 + 2x_3 = 8$, we have $x_1 = -1$. Therefore

$$[x]_{\mathscr{B}} = \begin{bmatrix} -1\\ -1\\ 3 \end{bmatrix}$$

Problem 2. We use the basis $\{1, t, t^2, t^3\}$. Then the coordinate vector of $1 + 2t^3$ is $\begin{bmatrix} 1\\0\\0\\2 \end{bmatrix}$. Then the

matrix whose columns are the coordinate vectors of the given set is

[1	2	0		[1	2	0		[1	2	0		[1	2	0
0	1	-1		0	1	-1		0	1	-1		0	1	-1
0	-3	2	\rightarrow	0	-3	2	\rightarrow	0	0	-1	\rightarrow	0	0	-1
2	0	-1		0	-4	-1		0	0	-5		0	0	0

Since there are pivots in every column, the vectors are linearly independent.

Problem 3. The matrix whose columns are the coordinate vectors of the given set is

	$\begin{bmatrix} 3\\7\\0\\0\end{bmatrix}$	$5 \\ 1 \\ 0 \\ -2$	$\begin{array}{c} 0 \\ 1 \\ -2 \\ 0 \end{array}$	$\begin{array}{c}1\\16\\-6\\2\end{array}$	\rightarrow	$\begin{bmatrix} 3\\1\\0\\0 \end{bmatrix}$	$5 \\ -9 \\ 0 \\ 1$	$\begin{array}{c} 0 \\ 1 \\ 1 \\ 0 \end{array}$	$\begin{array}{c}1\\14\\3\\-1\end{array}$	\rightarrow	$\begin{bmatrix} 1\\0\\0\\3 \end{bmatrix}$	$ \begin{array}{r} -9 \\ 1 \\ 0 \\ 5 \end{array} $	$ \begin{array}{c} 1 \\ 0 \\ 1 \\ 0 \end{array} $	$ \begin{array}{c} 14\\ -1\\ 3\\ 1 \end{array} $
÷	$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$	$ \begin{array}{r} -9 \\ 1 \\ 0 \\ 32 \end{array} $	$ \begin{array}{c} 1 \\ 0 \\ 1 \\ -3 \end{array} $	$ \begin{array}{c} 14 \\ -1 \\ 3 \\ -41 \end{array} $	\rightarrow	$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$	$ \begin{array}{c} -9 \\ 1 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 1 \\ 0 \\ 1 \\ -3 \end{array} $	$\begin{bmatrix} 14 \\ -1 \\ 3 \\ -9 \end{bmatrix}$	\rightarrow	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{array}{c} -9 \\ 1 \\ 0 \\ 0 \end{array}$	1 0 1 0	$ \begin{bmatrix} 14 \\ -1 \\ 3 \\ 0 \end{bmatrix} $

The coordinate vectors are linearly dependent as not every column has a pivot. The given set is not a basis for \mathbb{P}_3 .

Problem 4. The given set can be rewritten as

$$\operatorname{Span}\left\{ \begin{bmatrix} 3\\6\\-9\\-3 \end{bmatrix}, \begin{bmatrix} 6\\-2\\5\\1 \end{bmatrix}, \begin{bmatrix} -1\\-2\\3\\1 \end{bmatrix} \right\} = \operatorname{col} \begin{bmatrix} 3 & 6 & -1\\6 & -2 & -2\\-9 & 5 & 3\\-3 & 1 & 1 \end{bmatrix}$$

A basis of a column space is formed by pivot columns of the matrix. As

$$\begin{bmatrix} 3 & 6 & -1 \\ 6 & -2 & -2 \\ -9 & 5 & 3 \\ -3 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 6 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Therefore, the first two columns are the pivot columns. A basis of the subspace is

$$\left\{ \begin{bmatrix} 3\\6\\-9\\-3\end{bmatrix}, \begin{bmatrix} 6\\-2\\5\\1\end{bmatrix} \right\}$$

Since there are two vectors in a basis, the dimension is 2.

Problem 5. Similar to Problem 4, we find the pivot positions of the matrix

$$\begin{bmatrix} 1 & 3 & 9 & -7 \\ 0 & 1 & 4 & -3 \\ 2 & 1 & -2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{1} & 3 & 9 & -7 \\ 0 & \mathbf{1} & 4 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since there are two vectors in a basis, the dimension is 2.

Problem 6. This is True by definition.

Problem 7. This is **True** because

dim Col A = # of pivot columns = # of pivot rows = dim Row A

Problem 8. This is False. This also appeared in Chapter 4, Section 3, Problem 30. Consider

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \to B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

The pivot column $\begin{bmatrix} 1\\ 0 \end{bmatrix}$ of B cannot span

$$\operatorname{Col} A = \left\{ \begin{bmatrix} a \\ a \end{bmatrix} \middle| a \in \mathbb{R} \right\}$$

because $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is not in Col A.