1. Suggested Problems

Problem 1 (4.4.7). Find the coordinate vector $[x]_{\mathscr{B}}$ of x relative to the given basis $\mathscr{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ where

$$
b_{1}=\left[\begin{array}{r}
1 \\
-1 \\
-3
\end{array}\right], \quad b_{2}=\left[\begin{array}{r}
-3 \\
4 \\
9
\end{array}\right], \quad b_{3}=\left[\begin{array}{r}
2 \\
-2 \\
4
\end{array}\right], \quad x=\left[\begin{array}{r}
8 \\
-9 \\
6
\end{array}\right]
$$

Problem 2 (4.4.31). Use coordinate vectors to test the linear independence of the sets of polynomials. Explain your work.

$$
\left\{1+2 t^{3}, 2+t-3 t^{2},-t+2 t^{2}-t^{3}\right\}
$$

Problem 3. Determine whether the sets of polynomials form a basis for \mathbb{P}_{3}. Justify your conclusions.

$$
\left\{3+7 t, 5+t-2 t^{3}, t-2 t^{2}, 1+16 t-6 t^{2}+2 t^{3}\right\}
$$

Problem 4 (4.5.6). For the following subspace, (a) find a basis, and (b) state the dimension.

$$
\left\{\left[\begin{array}{r}
3 a+6 b-c \\
6 a-2 b-2 c \\
-9 a+5 b+3 c \\
-3 a+b+c
\end{array}\right]: a, b, c \text { in } \mathbb{R}\right\}
$$

Problem 5 (4.5.9). Find the dimension of the subspace spanned by the given vectors

$$
\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right],\left[\begin{array}{r}
9 \\
4 \\
-2
\end{array}\right],\left[\begin{array}{r}
-7 \\
-3 \\
1
\end{array}\right]
$$

Problem 6 (4.5.19). (T/F) A plane in \mathbb{R}^{3} is a two-dimensional subspace of \mathbb{R}^{3}.
Problem 7 (4.5.22). (T/F) The dimensions of the row space and the column space of A are the same, even if A is not square.

Problem 8 (4.5.23). (T/F) If B is any echelon form of A, then the pivot columns of B form a basis for the column space of A.

Problem 1. We need to solve a linear system whose augmented matrix is

$$
\left[\begin{array}{rrrr}
1 & -3 & 2 & 8 \\
-1 & 4 & -2 & -9 \\
-3 & 9 & 4 & 6
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & -3 & 2 & 8 \\
0 & 1 & 0 & -1 \\
0 & 0 & 10 & 30
\end{array}\right]
$$

Then $10 x_{3}=30 \Rightarrow x_{3}=10, x_{2}=-1$. Since $x_{1}-3 x_{2}+2 x_{3}=8$, we have $x_{1}=-1$. Therefore

$$
[x]_{\mathscr{B}}=\left[\begin{array}{r}
-1 \\
-1 \\
3
\end{array}\right]
$$

Problem 2. We use the basis $\left\{1, t, t^{2}, t^{3}\right\}$. Then the coordinate vector of $1+2 t^{3}$ is $\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 2\end{array}\right]$. Then the matrix whose columns are the coordinate vectors of the given set is

$$
\left[\begin{array}{rrr}
1 & 2 & 0 \\
0 & 1 & -1 \\
0 & -3 & 2 \\
2 & 0 & -1
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 2 & 0 \\
0 & 1 & -1 \\
0 & -3 & 2 \\
0 & -4 & -1
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 2 & 0 \\
0 & 1 & -1 \\
0 & 0 & -1 \\
0 & 0 & -5
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
\mathbf{1} & 2 & 0 \\
0 & \mathbf{1} & -1 \\
0 & 0 & \mathbf{- 1} \\
0 & 0 & 0
\end{array}\right]
$$

Since there are pivots in every column, the vectors are linearly independent.
Problem 3. The matrix whose columns are the coordinate vectors of the given set is

$$
\left.\begin{array}{rl}
{\left[\begin{array}{rrrr}
3 & 5 & 0 & 1 \\
7 & 1 & 1 & 16 \\
0 & 0 & -2 & -6 \\
0 & -2 & 0 & 2
\end{array}\right]} & \rightarrow\left[\begin{array}{rrrr}
3 & 5 & 0 & 1 \\
1 & -9 & 1 & 14 \\
0 & 0 & 1 & 3 \\
0 & 1 & 0 & -1
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & -9 & 1
\end{array}\right) \rightarrow\left[\begin{array}{rrr}
14 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
3 \\
3 & 5 & 0
\end{array}\right]
\end{array}\right]
$$

The coordinate vectors are linearly dependent as not every column has a pivot. The given set is not a basis for \mathbb{P}_{3}.

Problem 4. The given set can be rewritten as

$$
\operatorname{Span}\left\{\left[\begin{array}{r}
3 \\
6 \\
-9 \\
-3
\end{array}\right],\left[\begin{array}{r}
6 \\
-2 \\
5 \\
1
\end{array}\right],\left[\begin{array}{r}
-1 \\
-2 \\
3 \\
1
\end{array}\right]\right\}=\operatorname{col}\left[\begin{array}{rrr}
3 & 6 & -1 \\
6 & -2 & -2 \\
-9 & 5 & 3 \\
-3 & 1 & 1
\end{array}\right]
$$

A basis of a column space is formed by pivot columns of the matrix. As

$$
\left[\begin{array}{rrr}
3 & 6 & -1 \\
6 & -2 & -2 \\
-9 & 5 & 3 \\
-3 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
\mathbf{3} & 6 & -1 \\
0 & \mathbf{1} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore, the first two columns are the pivot columns. A basis of the subspace is

$$
\left\{\left[\begin{array}{r}
3 \\
6 \\
-9 \\
-3
\end{array}\right],\left[\begin{array}{r}
6 \\
-2 \\
5 \\
1
\end{array}\right]\right\}
$$

Since there are two vectors in a basis, the dimension is 2 .

Problem 5. Similar to Problem 4, we find the pivot positions of the matrix

$$
\left[\begin{array}{rrrr}
1 & 3 & 9 & -7 \\
0 & 1 & 4 & -3 \\
2 & 1 & -2 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
\mathbf{1} & 3 & 9 & -7 \\
0 & \mathbf{1} & 4 & -3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since there are two vectors in a basis, the dimension is 2 .
Problem 6. This is True by definition.
Problem 7. This is True because

$$
\operatorname{dim} \operatorname{Col} A=\# \text { of pivot columns }=\# \text { of pivot rows }=\operatorname{dim} \operatorname{Row} A
$$

Problem 8. This is False. This also appeared in Chapter 4, Section 3, Problem 30. Consider

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \rightarrow B=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]
$$

The pivot column $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ of B cannot span

$$
\operatorname{Col} A=\left\{\left.\left[\begin{array}{l}
a \\
a
\end{array}\right] \right\rvert\, a \in \mathbb{R}\right\}
$$

because $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is not in $\operatorname{Col} A$.

