1. Suggested Problems

Problem 1 (4.5.34). If a $6 \times 3 A$ has rank 3 , find nullity A, $\operatorname{rank} A$, and rank A^{T}.
Problem 2 (4.5.35). Suppose a 4×7 matrix A has four pivot columns. Is $\operatorname{Col} A=\mathbb{R}^{4}$? Is Nul $A=\mathbb{R}^{3}$? Explain your answers.

Problem 3 (4.5.36). Suppose a 5×6 matrix A has four pivot columns. What is nullity A ? Is Col $A=$ \mathbb{R}^{4} ? Why or why not?

Problem 4 (4.6.1). Let $\mathscr{B}=\left\{b_{1}, b_{2}\right\}$ and $\mathscr{C}=\left\{c_{1}, c_{2}\right\}$ be bases for a vector space V, and suppose $b_{1}=6 c_{1}-2 c_{2}$ and $b_{2}=9 c_{1}-4 c_{2}$.
(a) Find the change-of-coordinates matrix from \mathscr{B} to \mathscr{C}.
(b) Find $[x]_{\mathscr{C}}$ for $x=-3 b_{1}+2 b_{2}$. Use part (a).

Problem 5 (4.6.3). Let $\mathscr{U}=\left\{u_{1}, u_{2}\right\}$ and $\mathscr{W}=\left\{w_{1}, w_{2}\right\}$ be bases for V, and let P be a matrix whose columns are $\left[u_{1}\right]_{\mathscr{W}}$ and $\left[u_{2}\right]_{\mathscr{W}}$. Which of the following equations is satisfied by P for all x in V ?
a) $[x]_{\mathscr{U}}=P[x]_{\mathscr{W}}$
b) $[x]_{\mathscr{W}}=P[x]_{\mathscr{U}}$

Problem 6 (4.6.7). Let $\mathscr{B}=\left\{b_{1}, b_{2}\right\}$ and $\mathscr{C}=\left\{c_{1}, c_{2}\right\}$ be bases for \mathbb{R}^{2}. Find the change-of-coordinates matrix from \mathscr{B} to \mathscr{C} and the change-of-coordinates matrix from \mathscr{C} to \mathscr{B}.

$$
b_{1}=\left[\begin{array}{l}
7 \\
5
\end{array}\right], \quad b_{2}=\left[\begin{array}{l}
-3 \\
-1
\end{array}\right], \quad c_{1}=\left[\begin{array}{r}
1 \\
-5
\end{array}\right], \quad c_{2}=\left[\begin{array}{r}
-2 \\
2
\end{array}\right]
$$

Problem 1. By rank theorem, nullity $A=$ (number of columns) $-\operatorname{rank} A=3-3=0$. Also, rank $A=$ $\operatorname{rank} A^{T}=3$.

Problem 2. As the number of pivot columns is the rank of A, it follows that $\operatorname{Col} A$ is a 4-dimensional subspace of \mathbb{R}^{4}. Therefore $\operatorname{Col} A=\mathbb{R}^{4}$. On the other hand, we only know that Null A is a 3 dimensional subspace of \mathbb{R}^{7} where $3=7-\operatorname{Rank} A$. Therefore, Null $A \neq \mathbb{R}^{3}$.

Problem 3. By rank theorem, Nullity $A=6-4=2$. Though $\operatorname{dim} \operatorname{Col} A=4$, it is a subspace of \mathbb{R}^{5}, so $\operatorname{Col} A \neq \mathbb{R}^{4}$.

Problem 4.

(a) Recall that the change-of-coordinate matrix is given by

$$
P_{\mathscr{C} \leftarrow \mathscr{B}}=\left[\begin{array}{ll}
{\left[b_{1}\right]_{\mathscr{C}}} & \left.\left[b_{2}\right]_{\mathscr{C}}\right]=\left[\begin{array}{rr}
6 & 9 \\
-2 & -4
\end{array}\right] . \text {. } 1 .
\end{array}\right.
$$

(b)

$$
[x]_{\mathscr{B}}=P_{\mathscr{B} \leftarrow \mathscr{B}}[x]_{\mathscr{B}}=\left[\begin{array}{rr}
6 & 9 \\
-2 & -4
\end{array}\right]\left[\begin{array}{r}
-3 \\
2
\end{array}\right]=\left[\begin{array}{r}
0 \\
-2
\end{array}\right]
$$

Problem 5. Since $P=\left[\begin{array}{ll}{\left[u_{1}\right]_{\mathscr{W}}} & {\left[u_{2}\right]_{\mathscr{W}}}\end{array}\right]$, we have

$$
P\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[u_{1}\right]_{\mathscr{W}} \text { and } P\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[u_{2}\right]_{\mathscr{W}}
$$

Then it follows that $P=P_{\mathscr{W} \leftarrow u}$, with

$$
[x]_{\mathscr{V}}=P[x]_{\mathscr{U}}
$$

Therefore equation b is satisfied.
Problem 6. We have

$$
\left[\begin{array}{ll|ll}
c_{1} & c_{2} & b_{1} & b_{2}
\end{array}\right] \rightarrow\left[I \mid P_{\mathscr{B} \leftarrow \mathscr{B}}\right]
$$

Then as

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
1 & -2 & 7 & -3 \\
-5 & 2 & 5 & -1
\end{array}\right] } \rightarrow\left[\begin{array}{rrrr}
1 & -2 & 7 & -3 \\
0 & -8 & 40 & -16
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrr}
1 & -2 & 7 & -3 \\
0 & 1 & -5 & 2
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 0 & -3 & 1 \\
0 & 1 & -5 & 2
\end{array}\right]
\end{aligned}
$$

We have

$$
P_{\mathscr{C} \leftarrow \mathscr{B}}=\left[\begin{array}{ll}
-3 & 1 \\
-5 & 2
\end{array}\right]
$$

Similarly, we have

$$
\begin{aligned}
{\left[\begin{array}{rrrr}
7 & -3 & 1 & -2 \\
5 & -1 & -5 & 2
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
2 & -2 & 6 & -4 \\
5 & -1 & -5 & 2
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & -1 & 3 \\
5 & -2 \\
5 & -1 & -5 \\
-2
\end{array}\right] } \\
\rightarrow\left[\begin{array}{rrrr}
1 & -1 & 3 & -2 \\
0 & 4 & -20 & 12
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & -1 & 3 & -2 \\
0 & 1 & -5 & 3
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 0 & -2 & 1 \\
0 & 1 & -5 & 3
\end{array}\right]
\end{aligned}
$$

We conclude that

$$
P_{\mathscr{B} \leftarrow \mathscr{C}}=\left[\begin{array}{ll}
-2 & 1 \\
-5 & 3
\end{array}\right]
$$

