Problem 1 (4.5.34). If a 6×3 *A* has rank 3, find nullity *A*, rank *A*, and rank A^T .

Problem 2 (4.5.35). Suppose a 4×7 matrix *A* has four pivot columns. Is Col $A = \mathbb{R}^4$? Is Nul $A = \mathbb{R}^3$? Explain your answers.

Problem 3 (4.5.36). Suppose a 5×6 matrix A has four pivot columns. What is nullity A? Is Col $A = \mathbb{R}^4$? Why or why not?

Problem 4 (4.6.1). Let $\mathscr{B} = \{b_1, b_2\}$ and $\mathscr{C} = \{c_1, c_2\}$ be bases for a vector space V, and suppose $b_1 = 6c_1 - 2c_2$ and $b_2 = 9c_1 - 4c_2$.

- (a) Find the change-of-coordinates matrix from \mathscr{B} to \mathscr{C} .
- (b) Find $[x]_{\mathscr{C}}$ for $x = -3b_1 + 2b_2$. Use part (a).

Problem 5 (4.6.3). Let $\mathscr{U} = \{u_1, u_2\}$ and $\mathscr{W} = \{w_1, w_2\}$ be bases for *V*, and let *P* be a matrix whose columns are $[u_1]_{\mathscr{W}}$ and $[u_2]_{\mathscr{W}}$. Which of the following equations is satisfied by *P* for all *x* in *V*? a) $[x]_{\mathscr{U}} = P[x]_{\mathscr{W}}$ b) $[x]_{\mathscr{W}} = P[x]_{\mathscr{U}}$

Problem 6 (4.6.7). Let $\mathscr{B} = \{b_1, b_2\}$ and $\mathscr{C} = \{c_1, c_2\}$ be bases for \mathbb{R}^2 . Find the change-of-coordinates matrix from \mathscr{B} to \mathscr{C} and the change-of-coordinates matrix from \mathscr{C} to \mathscr{B} .

$$b_1 = \begin{bmatrix} 7\\5 \end{bmatrix}, \quad b_2 = \begin{bmatrix} -3\\-1 \end{bmatrix}, \quad c_1 = \begin{bmatrix} 1\\-5 \end{bmatrix}, \quad c_2 = \begin{bmatrix} -2\\2 \end{bmatrix}$$

Problem 1. By rank theorem, nullity A = (number of columns) - rank A = 3 - 3 = 0. Also, rank A =rank $A^T = 3$.

Problem 2. As the number of pivot columns is the rank of *A*, it follows that Col *A* is a 4-dimensional subspace of \mathbb{R}^4 . Therefore Col $A = \mathbb{R}^4$. On the other hand, we only know that Null A is a 3dimensional subspace of \mathbb{R}^7 where 3 = 7 - Rank A. Therefore, Null $A \neq \mathbb{R}^3$.

Problem 3. By rank theorem, Nullity A = 6 - 4 = 2. Though dim Col A = 4, it is a subspace of \mathbb{R}^5 , so Col $A \neq \mathbb{R}^4$.

Problem 4.

(a) Recall that the change-of-coordinate matrix is given by

-

$$P_{\mathscr{C}\leftarrow\mathscr{B}} = \begin{bmatrix} [b_1]_{\mathscr{C}} & [b_2]_{\mathscr{C}} \end{bmatrix} = \begin{bmatrix} 6 & 9\\ -2 & -4 \end{bmatrix}$$

(b)

$$[x]_{\mathscr{C}} = P_{\mathscr{C} \leftarrow \mathscr{B}}[x]_{\mathscr{R}} = \begin{bmatrix} 6 & 9\\ -2 & -4 \end{bmatrix} \begin{bmatrix} -3\\ 2 \end{bmatrix} = \begin{bmatrix} 0\\ -2 \end{bmatrix}$$

Problem 5. Since $P = \begin{bmatrix} u_1 \end{bmatrix}_{\mathscr{W}} \begin{bmatrix} u_2 \end{bmatrix}_{\mathscr{W}} \end{bmatrix}$, we have

$$P\begin{bmatrix}1\\0\end{bmatrix} = [u_1]_{\mathscr{W}} \text{ and } P\begin{bmatrix}0\\1\end{bmatrix} = [u_2]_{\mathscr{W}}$$

Then it follows that $P = P_{\mathcal{W} \leftarrow \mathcal{U}}$, with

$$[x]_{\mathscr{W}} = P[x]_{\mathscr{U}}$$

Therefore equation b is satisfied.

Problem 6. We have

Then as

We have

$$\begin{bmatrix} c_1 & c_2 & | & b_1 & b_2 \end{bmatrix} \rightarrow \begin{bmatrix} I & | & P_{\mathscr{C} \leftarrow \mathscr{B}} \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & 7 & -3 \\ -5 & 2 & 5 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 7 & -3 \\ 0 & -8 & 40 & -16 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & -2 & 7 & -3 \\ 0 & 1 & -5 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -3 & 1 \\ 0 & 1 & -5 & 2 \end{bmatrix}$$

$$P_{\mathscr{C} \leftarrow \mathscr{B}} = \begin{bmatrix} -3 & 1 \\ -5 & 2 \end{bmatrix}$$

Similarly, we have

$$\begin{bmatrix} 7 & -3 & 1 & -2 \\ 5 & -1 & -5 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -2 & 6 & -4 \\ 5 & -1 & -5 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 3 & -2 \\ 5 & -1 & -5 & -2 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & -1 & 3 & -2 \\ 0 & 4 & -20 & 12 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 3 & -2 \\ 0 & 1 & -5 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & -5 & 3 \end{bmatrix}$$
We conclude that

$$P_{\mathscr{B}\leftarrow\mathscr{C}} = \begin{bmatrix} -2 & 1\\ -5 & 3 \end{bmatrix}$$