1. Concept

Definition 1.1. Let A be an $n \times n$-matrix. A nonzero vector $x \in \mathbb{R}^{n}$ such that $A x=\lambda x$ for some scalar $\lambda \in \mathbb{R}$ is called an eigenvector. If such λ exists, we call λ the eigenvalue of x.
Definition 1.2. Let $\lambda \in \mathbb{R}$. The eigenspace of λ is the null space $\operatorname{Null}(A-\lambda I)$.

2. Suggested Problems

Problem 1 (5.1.1). Is $\lambda=2$ an eigenvalue of $\left[\begin{array}{ll}3 & 2 \\ 3 & 8\end{array}\right]$? Why or why not?
Problem 2 (5.1.3). Is $\left[\begin{array}{l}1 \\ 4\end{array}\right]$ an eigenvector of $\left[\begin{array}{ll}-3 & 1 \\ -3 & 8\end{array}\right]$? If so, find the eigenvalue.
Problem 3 (5.1.9, 5.1.10). Find a basis for the eigenspace corresponding to each listed eigenvalue.
(a)

$$
A=\left[\begin{array}{ll}
5 & 0 \\
2 & 1
\end{array}\right], \lambda=1,5
$$

(b)

$$
A=\left[\begin{array}{rr}
10 & -9 \\
4 & -2
\end{array}\right], \lambda=4
$$

Problem 1. Setting $A=\left[\begin{array}{ll}3 & 2 \\ 3 & 8\end{array}\right]$ and $\lambda=2$, we have

$$
A-\lambda I=\left[\begin{array}{ll}
3 & 2 \\
3 & 8
\end{array}\right]-2\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]
$$

Since the linear system associated to $(A-\lambda I) x=0$ has a free variable, λ is an eigenvalue of A.
Problem 2.

$$
\left[\begin{array}{ll}
-3 & 1 \\
-3 & 8
\end{array}\right]\left[\begin{array}{l}
1 \\
4
\end{array}\right]=\left[\begin{array}{r}
1 \\
29
\end{array}\right]
$$

As $\left[\begin{array}{l}1 \\ 4\end{array}\right]$ and $\left[\begin{array}{r}1 \\ 29\end{array}\right]$ are not scalar multiple of each other, $\left[\begin{array}{l}1 \\ 4\end{array}\right]$ is not a eigenvector.

Problem 3.

(a)

	$A-\lambda I$	rref	basis
$\lambda=1$	$\left[\begin{array}{rr}4 & 0 \\ 2 & 0\end{array}\right]$	$\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$	$\left\{\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$
$\lambda=5$	$\left[\begin{array}{rr}0 & 0 \\ 2 & -4\end{array}\right]$	$\left[\begin{array}{rr}1 & -2 \\ 0 & 0\end{array}\right]$	$\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$

(b)
$\left.\begin{array}{c|c|c} & A-\lambda I & \text { ref } \\ \hline \lambda=4 & {\left[\begin{array}{rr}6 & -9 \\ 4 & -6\end{array}\right]} & {\left[\begin{array}{rr}2 & -3 \\ 0 & 0\end{array}\right]}\end{array}\left\{\begin{array}{l}\text { basis } \\ \hline 2\end{array}\right]\right\}$ or $\left\{\left[\begin{array}{r}3 / 2 \\ 1\end{array}\right]\right\}$

