1. Suggested Problems

Problem 1 (5.2.6). Find the characteristic polynomial and the eigenvalues of the matrix
$\left[\begin{array}{rr}1 & -4 \\ 4 & 6\end{array}\right]$
Problem 2 (5.2.16). List the eigenvalues, repeated according to their multiplicities
$\left[\begin{array}{rrrr}4 & -7 & 0 & 2 \\ 0 & 3 & -4 & 6 \\ 0 & 0 & 3 & -8 \\ 0 & 0 & 0 & 1\end{array}\right]$

Problem 3 (5.2.19). Let A be an $n \times n$ matrix, and suppose A has n real eigenvalues, $\lambda_{1}, \ldots, \lambda_{n}$, repeated according to multiplicities, so that $\operatorname{det}(A-\lambda I)=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right)$. Explain why $\operatorname{det} A$ is the product of the n eigenvalues of A. (This result is true for any square matrix when complex eigenvalues are considered.)
Problem 4 (5.2.24). (T/F) The matrices A and $B^{-1} A B$ have the same set of eigenvalues for every invertible matrix B.
Problem 5 (5.2.25). (T/F) If 2 is an eigenvalue of A, then $A-2 I$ is not invertible.
Problem 6 (5.2.26). (T/F) If two matrices have the same set of eigenvalues, then they are similar.

Problem 1. The characteristic polynomial is

$$
\operatorname{det}\left[\begin{array}{rr}
1-\lambda & -4 \\
4 & 6-\lambda
\end{array}\right]=(1-\lambda)(6-\lambda)-(-4) \cdot 4=\lambda^{2}-7 \lambda+22
$$

The discriminant $(-7)^{2}-4 \cdot 1 \cdot 22<0$, so there are no real eigenvalues. The complex eigenvalues (if needed) are given by the quadratic formula

$$
\lambda=\frac{7 \pm \sqrt{49-88}}{2}=\frac{7 \pm \sqrt{-39}}{2}
$$

Problem 2. The characteristic polynomial is

$$
\operatorname{det}\left[\begin{array}{rrrr}
4-\lambda & -7 & 0 & 2 \\
0 & 3-\lambda & -4 & 6 \\
0 & 0 & 3-\lambda & -8 \\
0 & 0 & 0 & 1-\lambda
\end{array}\right]=(4-\lambda)(3-\lambda)(3-\lambda)(1-\lambda)
$$

Here we used the fact that the determinant of a triangular matrix is the product of the entries along the diagonal. Then the eigenvalue of this matrix is given by $4,3,3,1$ according to their multiplicities.
Problem 3. Let $\lambda=0$. Then the left-hand side becomes

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}(A)
$$

and the right-hand side becomes

$$
\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right)=\lambda_{1} \cdots \lambda_{2} \cdots \lambda_{n}
$$

Therefore $\operatorname{det}(A)$ is the product of the n eigenvalues of A.
Problem 4. (True) By definition A and $B^{-1} A B$ are similar for every invertible matrix B. By Theorem 4 (pg 286), they have the same sets of eigenvalues.

Problem 5. (True) If 2 is an eigenvalue of A, then $\operatorname{Null}(A-2 I)$ is not the zero space. Therefore, $A-2 I$ is not invertible.

Problem 6. (False) Consider

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \text { and }\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Both have characteristic polynomial $(1-\lambda)^{2}$, so the eigenvalue is 1 with multiplicity 2 for both. However, for every invertible matrix P,

$$
P^{-1}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] P=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

so the matrices cannot be similar.

