1. Suggested Problems

Problem 1 (5.3.1). Let $A=P D P^{-1}$. Compute A^{4} where

$$
P=\left[\begin{array}{ll}
5 & 7 \\
2 & 3
\end{array}\right] \text { and } D=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]
$$

Problem 2 (5.3.5). The matrix A is factored in the form $P D P^{-1}$. Use the Diagonalization Theorem to find the eigenvalues of A and a basis for each eigenspace.

$$
\left[\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right]=\left[\begin{array}{rrr}
1 & 1 & 2 \\
1 & 0 & -1 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 / 4 & 1 / 2 & 1 / 4 \\
1 / 4 & 1 / 2 & -3 / 4 \\
1 / 4 & -1 / 2 & 1 / 4
\end{array}\right]
$$

Problem 3 (5.3.7). Diagonalize the matrix if possible.

$$
\left[\begin{array}{rr}
1 & 0 \\
6 & -1
\end{array}\right]
$$

For Problems 4-6, A, P, and D are $n \times n$ matrices. Explain why the statment is True or False.
Problem 4 (5.3.22). (T/F) If \mathbb{R}^{n} has a basis of eigenvectors of A, then A is diagonalizable.
Problem 5 (5.3.23). (T/F) A is diagonalizable if and only if A has n eigenvalues, counting multiplicities.

Problem 6 (5.3.24). (T/F) If A is diagonalizable, then A is invertible.

Problem 1. If $A=P D P^{-1}$, then $A^{4}=P D^{4} P^{-1}$. For the power of diagonal matrices, one can simply raise the power of the diagonal entries, i.e.

$$
D^{4}=\left[\begin{array}{rr}
2^{4} & 0 \\
0 & 1^{4}
\end{array}\right]=\left[\begin{array}{rr}
16 & 0 \\
0 & 1
\end{array}\right]
$$

As $\operatorname{det}(P)=1, P^{-1}=\left[\begin{array}{rr}3 & -7 \\ -2 & 5\end{array}\right]$. Therefore

$$
A^{4}=P D^{4} P^{-1}=\left[\begin{array}{ll}
5 & 7 \\
2 & 3
\end{array}\right]\left[\begin{array}{rr}
16 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
3 & -7 \\
-2 & 5
\end{array}\right]=\left[\begin{array}{rr}
226 & -525 \\
90 & -209
\end{array}\right]
$$

Problem 2. The eigenvalues are given by the digonal entries of D, i.e.,

$$
5,1,1
$$

are the eigenvalues of A with multiplicity. Then the columns of P gives the corresponding eigenvectors that form the basis of the corresponding eigenspace, i.e.

$$
\underbrace{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]}_{\text {for } \lambda=5}, \underbrace{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right]}_{\text {for } \lambda=1}
$$

Problem 3.

(a) We first find the eigenvalues. The characteristic polynomial is

$$
(1-\lambda)(-1-\lambda)=-(1-\lambda)(1+\lambda)
$$

Therefore, the eigenvalues are ± 1. Since there are 2 distinct eigenvalues for 2×2 matrix, the matrix is diagonalizable.
(b) We need to find basis for the eigenspace of 1 and the eigenspace of -1 .

$$
A-I_{2}=\left[\begin{array}{rr}
0 & 0 \\
6 & -2
\end{array}\right]
$$

so

$$
\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

works.

$$
A+I_{2}=\left[\begin{array}{ll}
2 & 0 \\
6 & 0
\end{array}\right]
$$

so

$$
\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

works.
(c) The digaonalization is

$$
\left[\begin{array}{rr}
1 & 0 \\
6 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
-3 & 1
\end{array}\right]
$$

Problem 4. True. This is the diagonalization theorem (pg 291).
Problem 5. False. Consider

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

The characteristic polynomial is $(1-\lambda)^{2}$ and the eigenspace for 1 is given by

$$
E_{1}=\operatorname{Null}\left(A-\lambda I_{2}\right)=\operatorname{Null}\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\right)=\left\{\left.\left[\begin{array}{l}
x \\
y
\end{array}\right] \right\rvert\, y=0\right\}
$$

The general solution is given by

$$
\left[\begin{array}{r}
x_{1} \\
0
\end{array}\right] \rightsquigarrow E_{1}=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\}
$$

which is of dimension 1. Therefore, by Theorem 7 (pg. 294), the matrix is not diagonalizable.
Problem 6. False. Consider the diagonal matrix with 0 on one of the diagonal entry, e.g.

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

The matrix is a diagonal matrix, so it is diagonalizable ($P=I_{2}$) and is not invertible.

