\qquad

1. Suggested Problems

Problem 1 (1.2.1). Determine which matrices are in reduced echelon form and which others are only in echlon form.
a)

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

c)

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

b)

$$
\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

d)

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 1 & 1 \\
0 & 2 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 0 & 4
\end{array}\right]
$$

Problem 2 (1.2.9). Find the general solution of the system whose augmented matrix is

$$
\left[\begin{array}{rrrr}
0 & 1 & -6 & 5 \\
1 & -2 & 7 & -4
\end{array}\right]
$$

Problem 3 (1.2.11). Find the general solution of the system whose augmented matrix is

$$
\left[\begin{array}{rrrr}
3 & -4 & 2 & 0 \\
-9 & 12 & -6 & 0 \\
-6 & 8 & -4 & 0
\end{array}\right]
$$

Problem 4 (1.2.22). Determine the value(s) of h such that the matrix

$$
\left[\begin{array}{rrr}
1 & -3 & -2 \\
5 & h & -7
\end{array}\right]
$$

is the augmented matrix of a consistent linear system.

2. Additional Problems

Problem 5. Consider the linear system whose augmented matrix is

$$
\left[\begin{array}{rrrrr}
1 & 0 & -2 & 1 & 4 \\
1 & 1 & -3 & 0 & 6 \\
2 & 1 & -5 & 1 & 10 \\
3 & 0 & -6 & 3 & 12
\end{array}\right]
$$

Find the solution of the linear system where $x_{1}=0$ and $x_{2}=3$.

Problem 1.

a) reduced echelon
b) echelon
c) reduced echelon
d) echelon

Problem 2.

$$
\left[\begin{array}{rrrr}
0 & 1 & -6 & 5 \\
1 & -2 & 7 & -4
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{rrrr}
1 & -2 & 7 & -4 \\
0 & 1 & -6 & 5
\end{array}\right] \xrightarrow{R_{1}=R_{1}+2 R_{2}}\left[\begin{array}{llll}
1 & 0 & -5 & 6 \\
0 & 1 & -6 & 5
\end{array}\right]
$$

The blue entries of the last matrix indicates pivots of the augmented matrix. Therefore x_{1} and x_{2} are leading variables, and x_{3} and x_{4} are free variables. We obtain a system

$$
\begin{aligned}
& x_{1}-5 x_{3} \\
&=6 \\
& x_{2}-6 x_{3}=5
\end{aligned}
$$

Hence, the general solution is

$$
\begin{aligned}
& x_{1}=6+5 x_{3} \\
& x_{2}=5+6 x_{3} \\
& x_{3} \text { is free }
\end{aligned}
$$

Problem 3.

$$
\left[\begin{array}{rrrr}
3 & -4 & 2 & 0 \\
-9 & 12 & -6 & 0 \\
-6 & 8 & -4 & 0
\end{array}\right] \xrightarrow[R_{3}=R_{3}+2 R_{1}]{R_{2}=R_{2}+3 R_{1}}\left[\begin{array}{rrrr}
3 & -4 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore, the equation we have is $3 x_{1}-4 x_{2}+2 x_{3}=0$, or $3 x_{1}=4 x_{2}-2 x_{3}$. Therefore, the general solution is

$$
\begin{aligned}
& x_{1}=\frac{4}{3} x_{2}-\frac{2}{3} x_{3} \\
& x_{2} \text { is free } \\
& x_{3} \text { is free }
\end{aligned}
$$

Problem 4.

$$
\left[\begin{array}{rrr}
1 & -3 & -2 \\
5 & h & -7
\end{array}\right] \xrightarrow{R_{2}=R_{2}-5 R_{1}}\left[\begin{array}{rrr}
1 & -3 & -2 \\
0 & h+15 & 3
\end{array}\right]
$$

We use the theorem that says the following
Theorem. A linear system is inconsistent if and only if the last column of the augmented matrix is a pivot column.

Then the last column is a pivot column if and only if $h+15=0$ if and only if $h=-15$. Therefore, the system is consistent if and only if $h \neq-15$.

Problem 5.

Note. This is not a good problem. The problem should have been simply find the general solution of the system whose augmented matrix is given. The first two row gives the equation $x_{1}-2 x_{3}+x_{4}=4$ and $x_{1}+x_{2}-3 x_{3}=6$. By plugging in x_{1} and x_{2}, we get a system of linear equations that is easy to solve.

Here, we only explain how to find the general solution.

$$
\left[\begin{array}{rrrrr}
1 & 0 & -2 & 1 & 4 \\
1 & 1 & -3 & 0 & 6 \\
2 & 1 & -5 & 1 & 10 \\
3 & 0 & -6 & 3 & 12
\end{array}\right] \xrightarrow[\substack{R_{3}=R_{3}-2 R_{1} \\
R_{4}=R_{4}-3 R_{1}}]{R_{2}=R_{2}-R_{1}}\left[\begin{array}{rrrrr}
1 & 0 & -2 & 1 & 4 \\
0 & 2 & -2 & -2 & 4 \\
0 & 1 & -1 & -1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \xrightarrow[R_{3}=R_{3}-\frac{1}{2} R_{2}]{R_{2}=\frac{1}{2} R_{2}}\left[\begin{array}{rrrrr}
1 & 0 & -2 & 1 & 4 \\
0 & 1 & -1 & -1 & 2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Then we have

$$
\begin{aligned}
x_{1} \quad-2 x_{3}+x_{4} & =4 \\
x_{2}-x_{3}-x_{4} & =2
\end{aligned}
$$

Therefore, the general solution is

$$
\begin{aligned}
& x_{1}=4+2 x_{3}-x_{4} \\
& x_{2}=2+x_{3}+x_{4} \\
& x_{3} \text { is free } \\
& x_{4} \text { is free }
\end{aligned}
$$

