1. Suggested Problems

Problem 1 (1.2.1). Determine which matrices are in reduced echelon form and which others are only in echlon form.

a)		b)	
	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$		$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
c)		d)	
.,	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	-,	$\begin{bmatrix} 1 & 1 & 0 & 1 & 1 \\ 0 & 2 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 & 4 \end{bmatrix}$

Problem 2 (1.2.9). Find the general solution of the system whose augmented matrix is

$$\begin{bmatrix} 0 & 1 & -6 & 5 \\ 1 & -2 & 7 & -4 \end{bmatrix}$$

Problem 3 (1.2.11). Find the general solution of the system whose augmented matrix is

$$\begin{bmatrix} 3 & -4 & 2 & 0 \\ -9 & 12 & -6 & 0 \\ -6 & 8 & -4 & 0 \end{bmatrix}$$

Problem 4 (1.2.22). Determine the value(s) of *h* such that the matrix

$$\begin{bmatrix} 1 & -3 & -2 \\ 5 & h & -7 \end{bmatrix}$$

is the augmented matrix of a consistent linear system.

2. Additional Problems

Problem 5. Consider the linear system whose augmented matrix is

$$\begin{bmatrix} 1 & 0 & -2 & 1 & 4 \\ 1 & 1 & -3 & 0 & 6 \\ 2 & 1 & -5 & 1 & 10 \\ 3 & 0 & -6 & 3 & 12 \end{bmatrix}$$

Find the solution of the linear system where $x_1 = 0$ and $x_2 = 3$.

Problem 1.

a) reduced echelon	b) echelon
c) reduced echelon	d) echelon

Problem 2.

[0	1	-6	5	$R_1 \leftrightarrow R_2$	[1	-2	7	-4	$R_1 = R_1 + 2R_2$	[1	0	-5	6]
[1	-2	7	-4	\rightarrow	0	1	-6	5	$\xrightarrow{R_1=R_1+2R_2}$	0	1	-6	5

The blue entries of the last matrix indicates pivots of the augmented matrix. Therefore x_1 and x_2 are leading variables, and x_3 and x_4 are free variables. We obtain a system

 x_1

$$-5x_3 = 6$$
$$x_2 - 6x_3 = 5$$

Hence, the general solution is

$$x_1 = 6 + 5x_3$$

 $x_2 = 5 + 6x_3$
 x_3 is free

Problem 3.

$$\begin{bmatrix} 3 & -4 & 2 & 0 \\ -9 & 12 & -6 & 0 \\ -6 & 8 & -4 & 0 \end{bmatrix} \xrightarrow{R_2 = R_2 + 3R_1}_{R_3 = R_3 + 2R_1} \begin{bmatrix} 3 & -4 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Therefore, the equation we have is $3x_1 - 4x_2 + 2x_3 = 0$, or $3x_1 = 4x_2 - 2x_3$. Therefore, the general solution is

$$x_1 = \frac{4}{3}x_2 - \frac{2}{3}x_3$$

$$x_2 \text{ is free}$$

$$x_3 \text{ is free}$$

Problem 4.

$$\begin{bmatrix} 1 & -3 & -2 \\ 5 & h & -7 \end{bmatrix} \xrightarrow{R_2 = R_2 - 5R_1} \begin{bmatrix} 1 & -3 & -2 \\ 0 & h + 15 & 3 \end{bmatrix}$$

We use the theorem that says the following

Theorem. A linear system is inconsistent if and only if the last column of the augmented matrix is a pivot column.

Then the last column is a pivot column if and only if h + 15 = 0 if and only if h = -15. Therefore, the system is consistent if and only if $h \neq -15$.

Problem 5.

Note. This is not a good problem. The problem should have been simply find the general solution of the system whose augmented matrix is given. The first two row gives the equation $x_1 - 2x_3 + x_4 = 4$ and $x_1 + x_2 - 3x_3 = 6$. By plugging in x_1 and x_2 , we get a system of linear equations that is easy to solve.

Here, we only explain how to find the general solution.

$$\begin{bmatrix} 1 & 0 & -2 & 1 & 4 \\ 1 & 1 & -3 & 0 & 6 \\ 2 & 1 & -5 & 1 & 10 \\ 3 & 0 & -6 & 3 & 12 \end{bmatrix} \xrightarrow{R_2 = R_2 - R_1} \begin{array}{c} \begin{bmatrix} 1 & 0 & -2 & 1 & 4 \\ 0 & 2 & -2 & -2 & 4 \\ R_3 = R_3 - 2R_1 \\ R_4 = R_4 - 3R_1 \end{array} \xrightarrow{R_2 = R_2 - R_2} \begin{array}{c} \begin{bmatrix} 1 & 0 & -2 & 1 & 4 \\ 0 & 1 & -1 & -1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_2 = \frac{1}{2}R_2} \begin{array}{c} \begin{bmatrix} 1 & 0 & -2 & 1 & 4 \\ 0 & 1 & -1 & -1 & 2 \\ R_3 = R_3 - \frac{1}{2}R_2 \end{array} \xrightarrow{R_2 - \frac{1}{2}R_2} \begin{array}{c} \begin{bmatrix} 1 & 0 & -2 & 1 & 4 \\ 0 & 1 & -1 & -1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Then we have

Therefore, the general solution is

 $x_1 - 2x_3 + x_4 = 4$ $x_2 - x_3 - x_4 = 2$ $x_3 - x_4 = 2$

$$x_1 = 4 + 2x_3 - x_4$$

 $x_2 = 2 + x_3 + x_4$
 x_3 is free
 x_4 is free