1. Suggested Problems

Problem 1 (5.4.3). Assume the mapping $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ defined by

$$
T\left(a_{0}+a_{1} t+a_{2} t^{2}\right)=3 a_{0}+\left(5 a_{0}-2 a_{1}\right) t+\left(4 a_{1}+a_{2}\right) t^{2}
$$

is linear. Find the matrix representation of T relative to the basis $\mathscr{B}=\left\{1, t, t^{2}\right\}$.
Problem 2 (5.4.5). Let $\mathscr{B}=\left\{b_{1}, b_{2}, b_{3}\right\}$ be a basis for a vector space V. Find $T\left(3 b_{1}-4 b_{2}\right)$ when T is a linear transformation from V to V whose matrix relative to \mathscr{B} is

$$
[T]_{\mathscr{B}}=\left[\begin{array}{rrr}
0 & -6 & 1 \\
0 & 5 & -1 \\
1 & -2 & 7
\end{array}\right]
$$

Problem 3 (5.4.10). Define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(x)=A x$ with

$$
A=\left[\begin{array}{rr}
5 & -3 \\
-7 & 1
\end{array}\right]
$$

Find a basis \mathscr{B} for \mathbb{R}^{2} with the property that $[T]_{\mathscr{B}}$ is diagonal.
Provide justification for each statement in Problems 4-6. In each case, the matrices are square.
Problem 4 (5.4.22). If A is similar to B, then A^{2} is similar to B^{2}.
Problem 5 (5.4.23). If B is similar to A and C is similar to A, then B is similar to C.
Problem 6 (5.4.24). If A is diagonalizable and B is similar to A, then B is also diagonalizable.

Problem 1. The matrix representation $[T]_{\mathscr{B}}$ of T relative to \mathscr{B} is given by

$$
\begin{aligned}
& {\left[\begin{array}{lll}
T(1)]_{\mathscr{B}} & {[T(t)]_{\mathscr{B}}} & {\left[T\left(t^{2}\right)\right]_{\mathscr{B}}}
\end{array}\right] } \\
& T(1)=3+5 t \Rightarrow\Rightarrow[T(1)])_{\mathscr{B}}
\end{aligned}=\left[\begin{array}{l}
3 \\
5 \\
0
\end{array}\right]
$$

Therefore,

$$
[T]_{\mathscr{B}}=\left[\begin{array}{rrr}
3 & 0 & 0 \\
5 & -2 & 0 \\
0 & 4 & 1
\end{array}\right]
$$

Problem 2. The \mathscr{B}-coordinate of $T\left(3 b_{1}-4 b_{2}\right)$ is given by

$$
\left[T\left(3 b_{1}-4 b_{2}\right)\right]_{\mathscr{B}}=[T]_{\mathscr{B}}\left[3 b_{1}-4 b_{2}\right]_{\mathscr{B}}=\left[\begin{array}{rrr}
0 & -6 & 1 \\
0 & 5 & -1 \\
1 & -2 & 7
\end{array}\right]\left[\begin{array}{r}
3 \\
-4 \\
0
\end{array}\right]=\left[\begin{array}{r}
24 \\
-20 \\
11
\end{array}\right]
$$

Therefore, $T\left(3 b_{1}-4 b_{2}\right)=24 b_{1}-20 b_{2}+11 b_{3}$.
Problem 3. We diagonalize A. The characteristic polynomial is given by

$$
\operatorname{det}\left[\begin{array}{rr}
5-\lambda & -3 \\
-7 & 1-\lambda
\end{array}\right]=(5-\lambda)(1-\lambda)-21=\lambda^{2}-6 \lambda-16=(\lambda-8)(\lambda+2)
$$

Hence the eigenvalues are $\lambda=8,-2$.

$$
\begin{aligned}
& A-8 I=\left[\begin{array}{ll}
-3 & -3 \\
-7 & -7
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \rightsquigarrow\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \text { is an eigenvalue for } 8 \\
& A+2 I=\left[\begin{array}{rr}
7 & -3 \\
-7 & 3
\end{array}\right] \rightarrow\left[\begin{array}{rr}
7 & -3 \\
0 & 0
\end{array}\right] \rightsquigarrow\left[\begin{array}{c}
3 \\
7
\end{array}\right] \text { is an eigenvalue for }-2
\end{aligned}
$$

Therefore $[T]_{\mathscr{B}}$ is diagonal for the basis

$$
\mathscr{B}=\left\{\left[\begin{array}{r}
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
3 \\
7
\end{array}\right]\right\}
$$

Problem 4. If A is similar to B, there exists an invertible matrix P such that $A=P B P^{-1}$. Then

$$
A^{2}=\left(P B P^{-1}\right)\left(P B P^{-1}\right)=P B B P^{-1}=P B^{2} P^{-1}
$$

Therefore, A^{2} is similar to B^{2}.
Problem 5. If B is similar to A, then there exists an invertible matrix P such that

$$
B=P A P^{-1} \Rightarrow A=P^{-1} B P
$$

If C is similar to A, then there exists an invertible matrix Q such that

$$
C=Q A Q^{-1}
$$

Combining the two equality, we get

$$
C=Q A Q^{-1}=Q P^{-1} B P Q^{-1}
$$

Since $Q P^{-1}$ is invertible and $P Q^{-1}=\left(Q P^{-1}\right)^{-1}$, we see that C is similar to B.

Problem 6. A is diagonalizable by definition means that A is similar to some diagonal matrix D. Since B is similar to A, by problem 23 above, B is similar to D. Hence B is diagoanliazble.

