1. Suggested Problems

Problem 1 (5.5.2, 5.5.4). Let \mathbb{C}^{2} act on the following matrices. Find the eigenvalues and a basis for each eigenspace in \mathbb{C}^{2}.
a)

$$
\left[\begin{array}{rr}
-1 & -1 \\
5 & -5
\end{array}\right]
$$

b)

$$
\left[\begin{array}{rr}
-3 & -1 \\
2 & -5
\end{array}\right]
$$

Problem 2 (6.1.5). Let $u=\left[\begin{array}{r}-1 \\ 2\end{array}\right]$ and $v=\left[\begin{array}{l}2 \\ 3\end{array}\right]$. Compute $\left(\frac{u \cdot v}{v \cdot v}\right) v$.
Problem 3 (6.1.13). Find the distance between $x=\left[\begin{array}{c}10 \\ -3\end{array}\right]$ and $y=\left[\begin{array}{l}-1 \\ -5\end{array}\right]$.
Problem 4 (6.1.15, 6.1.16). Determine which pairs of vectors are orthogonal.
a) $a=\left[\begin{array}{r}8 \\ -5\end{array}\right], b=\left[\begin{array}{l}-2 \\ -3\end{array}\right]$
b) $u=\left[\begin{array}{r}12 \\ 3 \\ -5\end{array}\right], v=\left[\begin{array}{r}2 \\ -3 \\ 3\end{array}\right]$

Problem 5 (6.1.33). Let $v=\left[\begin{array}{l}a \\ b\end{array}\right]$. Describe the set H of vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ that are orthogonal to v. [Hint: Consider $v=0$ and $v \neq 0$.]
Problem 6 (6.1.19). (T/F) $v \cdot v=\|v\|^{2}$,
Problem 7 (6.1.20). (T/F) $u \cdot v-v \cdot u=0$
Problem 8 (6.1.21). (T/F) If the distance from u to v equals the distance from u to $-v$, then u and v are orthogonal.
Problem 9 (6.1.23). (T/F) If vectors v_{1}, \ldots, v_{p} span a subspace W and if x is orthogonal to each v_{j} for $j=1, \ldots, p$, then x is in W^{\perp}.

Problem 1.

(a) The characteristic polynomial is

$$
\operatorname{det}\left[\begin{array}{rr}
-1-\lambda & -1 \\
5 & -5-\lambda
\end{array}\right]=\lambda^{2}+6 \lambda+5+5=\lambda^{2}+6 \lambda+10
$$

Therefore, the eigenvalues are

$$
\lambda=\frac{-6 \pm \sqrt{36-40}}{2}=-3 \pm i
$$

Since we have two distinct eigenvalues for 2×2 matrix, it is automatic that the eigenspace have dimension 1.

To find the eigenvector for $-3-i$, we need to look at

$$
\left[\begin{array}{rr}
2+i & -1 \\
5 & -2+i
\end{array}\right] \rightarrow\left[\begin{array}{rr}
2+i & -1 \\
0 & 0
\end{array}\right]
$$

We know that the nullity is 1 , so the dimension of the row space (which equals the dimension of the column space) is 1 . Therefore, we automatically get the second row is a scalar multiple of the first row. To see directly, we have

$$
(2-i)\left[\begin{array}{ll}
2+i & -1
\end{array}\right]=\left[\begin{array}{ll}
5 & -2+i
\end{array}\right]
$$

Therefore, an eigenvector for $-3-i$ is $\left[\begin{array}{r}1 \\ 2+i\end{array}\right]$ and $\left\{\left[\begin{array}{r}1 \\ 2+i\end{array}\right]\right\}$ is the basis for the eigenspace for $-3-i$.

To find an eigenvector for $-3+i$, we need to look at

$$
\left[\begin{array}{rr}
2-i & -1 \\
5 & -2-i
\end{array}\right] \rightarrow\left[\begin{array}{rr}
2-i & -1 \\
0 & 0
\end{array}\right]
$$

Therefore, an eigenvector for $-3+i$ is $\left[\begin{array}{r}1 \\ 2-i\end{array}\right]$ and $\left\{\left[\begin{array}{r}1 \\ 2-i\end{array}\right]\right\}$ is the basis for the eigenspace for $-3+i$.
(b) The characteristic polynomial is

$$
\operatorname{det}\left[\begin{array}{rr}
-3-\lambda & -1 \\
2 & -5-\lambda
\end{array}\right]=\lambda^{2}+8 \lambda+15+2=\lambda^{2}+8 \lambda+17
$$

The eigenvalues are

$$
\lambda=\frac{-8 \pm \sqrt{64-68}}{2}=-4 \pm i
$$

For $-4-i$,

$$
\left[\begin{array}{rr}
1+i & -1 \\
2 & -1+i
\end{array}\right] \rightarrow\left[\begin{array}{rr}
1+i & -1 \\
0 & 0
\end{array}\right]
$$

By same reasoning as above, $\left\{\left[\begin{array}{r}1 \\ 1+i\end{array}\right]\right\}$ is the basis for the eigenspace for $-4-i$.
For $-4+i$,

$$
\left[\begin{array}{rr}
1-i & -1 \\
2 & -1-i
\end{array}\right] \rightarrow\left[\begin{array}{rr}
1-i & -1 \\
0 & 0
\end{array}\right]
$$

Therefore, $\left\{\left[\begin{array}{r}1 \\ 1-i\end{array}\right]\right\}$ is the basis for the eigenspace for $-4-i$.

Problem 2.

$$
u \cdot v=-2+6=4 \text { and } v \cdot v=4+9=13
$$

Therefore,

$$
\left(\frac{u \cdot v}{v \cdot v}\right) v=\frac{4}{13}\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
\frac{8}{13} \\
\frac{12}{13}
\end{array}\right]
$$

Problem 3. The distance is

$$
\operatorname{dist}(x, y)=\|x-y\|=\left\|\left[\begin{array}{r}
11 \\
2
\end{array}\right]\right\|=\sqrt{11^{2}+2^{2}}=\sqrt{125}=5 \sqrt{5}
$$

Problem 4.

(a) $a \cdot b=-16+15=-1 \neq 0$, not orthogonal
(b) $u \cdot v=24-9-15=0$ orthogonal.

Problem 5.

(a) Suppose $v=0$. Then for any vector $\left[\begin{array}{l}x \\ y\end{array}\right], v \cdot\left[\begin{array}{l}x \\ y\end{array}\right]=0$. Therefore,

$$
H=\mathbb{R}^{2} .
$$

(b) Suppose $v \neq 0$. Here we have two cases $a \neq 0$ or $b \neq 0$.
(i) Assume $a \neq 0$, and consider the equation

$$
v \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]=a x+b y=0
$$

Then $a x=-b y \Rightarrow x=-\frac{b}{a} y$. Note here that we were able to divide by a because $a \neq 0$. Therefore,

$$
H=\left\{\left.\left[\begin{array}{r}
-\frac{b}{a} y \\
y
\end{array}\right] \right\rvert\, y \in \mathbb{R}\right\}=\operatorname{Span}\left\{\left[\begin{array}{r}
-\frac{b}{a} \\
1
\end{array}\right]\right\}
$$

(ii) Assume $b \neq 0$. By repeating the step (i) with the roles of a and b interchanged, we get

$$
H=\left\{\left.\left[\begin{array}{r}
x \\
-\frac{a}{b} x
\end{array}\right] \right\rvert\, y \in \mathbb{R}\right\}=\operatorname{Span}\left\{\left[\begin{array}{r}
1 \\
-\frac{a}{b}
\end{array}\right]\right\}
$$

Problem 6. (True) See pg. 351.
Problem 7. (True) The dot product is commutative, i.e. $u \cdot v=v \cdot u$. Hence, $u \cdot v-v \cdot u=0$.
Problem 8. (True) To paraphrase, we have

$$
\begin{array}{rlrl}
& & \|u-v\| & =\|u+v\| \\
\Rightarrow & \|u-v\|^{2} & =\|u+v\|^{2} \\
\Rightarrow & (u-v) \cdot(u-v) & =(u+v) \cdot(u+v) \\
\Rightarrow & \|u\|^{2}-2(u \cdot v)+\|v\|^{2} & =\|u\|^{2}+2(u \cdot v)+\|v\|^{2} \\
\Rightarrow & -2(u \cdot v) & =2(u \cdot v) \\
\Rightarrow & 0 & =4(u \cdot v)
\end{array}
$$

Hence we have $u \cdot v=0$, and u is orthogonal to v.
Problem 9. (True) Any element w in W is of the form

$$
w=a_{1} v_{1}+\cdots+a_{p} v_{p}
$$

for some real numbers $a_{1}, \ldots, a_{p} \in \mathbb{R}$. Then

$$
x \cdot w=x \cdot\left(a_{1} v_{1}+\cdots+a_{p} v_{p}\right)=a_{1} \underbrace{\left(x \cdot v_{1}\right)}_{=0}+\cdots+a_{n} \underbrace{\left(x \cdot v_{p}\right)}_{=0}=0
$$

Therefore x is orthogonal to any element w in W, and, by definition, $x \in W^{\perp}$.

