1. Suggested Problems

Problem 1 (6.2.8). Show that $\left\{u_{1}, u_{2}\right\}$ is an orthogonal basis for \mathbb{R}^{2}. Then express x as a linear combination of the u 's.

$$
u_{1}=\left[\begin{array}{l}
3 \\
1
\end{array}\right], \quad u_{2}=\left[\begin{array}{r}
-2 \\
6
\end{array}\right], \text { and } \quad x=\left[\begin{array}{r}
-4 \\
3
\end{array}\right]
$$

Problem 2 (6.2.13). Let $y=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ and $u=\left[\begin{array}{r}4 \\ -7\end{array}\right]$. Write y as the sum of two orthogonal vectors, one in $\operatorname{Span}\{u\}$ and one orthogonal to u.
Problem 3 (6.2.36). Let U be an $n \times n$ orthogonal matrix. Show that the rows of U form an orthonormal basis of \mathbb{R}^{n}.

Problem 4 (6.2.37). Let U and V be $n \times n$ orthogonal matrices. Explain why $U V$ is an orthogonal matrix. [That is, explain why $U V$ is invertible and its inverse is $(U V)^{T}$.]
Problem 5 (6.3.11). Find the closest point to y in the subspace W spanned by v_{1} and v_{2} where

$$
y=\left[\begin{array}{l}
3 \\
1 \\
5 \\
1
\end{array}\right], \quad v_{1}=\left[\begin{array}{r}
3 \\
1 \\
-1 \\
1
\end{array}\right], \quad v_{2}=\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right]
$$

Problem 6 (6.3.19). Let $u_{1}=\left[\begin{array}{l}1 \\ 1 \\ -2\end{array}\right], u_{2}=\left[\begin{array}{r}5 \\ -1 \\ 2\end{array}\right]$, and $u_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Note that u_{1} and u_{2} are orthogonal but that u_{3} is not orthogonal to u_{1} or u_{2}. It can be shown that u_{3} is not in the subspace W spanned by u_{1} and u_{2}. Use this fact to construct a nonzero vector v in \mathbb{R}^{3} that is orthogonal to u_{1} and u_{2}.

Problem 1. We have $u_{1} \cdot u_{2}=-6+6=0$. Hence $\left\{u_{1}, u_{2}\right\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^{2}. By Theorem 4 of Chapter $6,\left\{u_{1}, u_{2}\right\}$ is a linear independent set with two vectors in \mathbb{R}^{2}. In particular, it is a basis of \mathbb{R}^{2}.

We want to find c_{1} and c_{2} such that $x=c_{1} u_{1}+c_{2} u_{2}$. By Theorem 5 of Chapter 6 , we have

$$
c_{1}=\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}}=\frac{-9}{10} \quad \text { and } \quad c_{2}=\frac{x \cdot u_{2}}{u_{2} \cdot u_{2}}=\frac{26}{40}=\frac{13}{20} .
$$

To conclude,

$$
x=-\frac{9}{10} u_{1}+\frac{13}{20} u_{2} .
$$

Problem 2. We first find a nonzero vector that is orthogonal to u. By inspection, we know that $v=\left[\begin{array}{l}7 \\ 4\end{array}\right]$ is orthogonal to $u .\{u, v\}$ is an orthogonal set with two vectors in \mathbb{R}^{2}, so it is an orthogonal basis. By the same arguments as of Problem 1,

$$
c_{1}=\frac{y \cdot u}{u \cdot u}=\frac{-13}{65}=-\frac{1}{5} \quad \text { and } \quad c_{2}=\frac{y \cdot v}{v \cdot v}=\frac{26}{65}=\frac{2}{5}
$$

Hence

$$
y=-\frac{1}{5} u+\frac{2}{5} v
$$

Problem 3. U is orthogonal, then U^{T} is also orthogonal. This is because $\left(U^{T}\right)^{T}=U$ is the inverse of U^{T}. Then the set of columns of U^{T}, which is the set of rows of U, form an orthonormal basis of \mathbb{R}^{n}.

Problem 4. We have

$$
(U V)^{T} U V=V^{T} U^{T} U V=V^{T} I V=V^{T} V=I
$$

Therefore, $U V$ is invertible, and $(U V)^{T}$ is the inverse of $U V$.
Problem 5. First, we need to find an orthonormal basis of W. Note that

$$
v_{1} \cdot v_{2}=3-1-1-1=0
$$

Therefore, $\left\{u_{1}, u_{2}\right\}$ is an orthonormal basis. Then the projection \hat{y} of y is given by

$$
\hat{y}=c_{1} v_{1}+c_{2} v_{2}
$$

where

$$
\begin{aligned}
c_{1} & =\frac{y \cdot v_{1}}{v_{1} \cdot v_{1}}=\frac{6}{12}=\frac{1}{2} \\
c_{2} & =\frac{y \cdot v_{2}}{v_{2} \cdot v_{2}}=\frac{6}{4}=\frac{3}{2}
\end{aligned}
$$

Therefore

$$
\hat{y}=\frac{1}{2}\left[\begin{array}{r}
3 \\
1 \\
-1 \\
1
\end{array}\right]+\frac{3}{2}\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{r}
3 \\
-1 \\
1 \\
-1
\end{array}\right]
$$

Problem 6. Let \hat{u}_{3} be the projection of u_{3} onto W. Then we have a decomposition $u_{3}=\hat{u}_{3}+z$ where z is orthogonal to any vector in W. Hence we compute \hat{u}_{3} first. Similar to Problem 5, we have

$$
\hat{u}_{3}=c_{1} u_{1}+c_{2} u_{2}
$$

where

$$
\begin{aligned}
c_{1} & =\frac{u_{3} \cdot u_{1}}{u_{1} \cdot u_{1}}=-\frac{2}{6}=-\frac{1}{3} \\
c_{2} & =\frac{u_{3} \cdot u_{2}}{u_{2} \cdot u_{2}}=-\frac{2}{30}=-\frac{1}{15}
\end{aligned}
$$

Therefore

$$
u_{3}=-\frac{1}{3}\left[\begin{array}{r}
1 \\
1 \\
-2
\end{array}\right]+\frac{1}{15}\left[\begin{array}{r}
5 \\
-1 \\
2
\end{array}\right]+z
$$

Solve for z, one should get

$$
z=\left[\begin{array}{c}
0 \\
\frac{2}{5} \\
\frac{1}{5}
\end{array}\right]
$$

