1. **Suggested Problems**

Problem 1 (6.4.5*)**.** Let

$$
A = \begin{bmatrix} 1 & 7 \\ -4 & -7 \\ 0 & -4 \\ 1 & 1 \end{bmatrix}
$$

and let $W = \text{Col}(A)$.

- (a) Use the Gram-Schmidt process to produce an orthogonal basis for W .
- (b) Find a basis of W^{\perp} .

Problem 2 (6.4.11)**.** Find an orthogonal basis for the column space of

$$
\begin{bmatrix} 1 & 2 & 5 \ -1 & 1 & -4 \ -1 & 4 & -3 \ 1 & -4 & 7 \ 1 & 2 & 1 \ \end{bmatrix}
$$

Problem 3 (6.4.13)**.** The columns of Q were obtained by applying the Gram-Schmidt process to the columns of A. Find an upper triangular matrix R such that $A = QR$.

$$
A = \begin{bmatrix} 5 & 9 \\ 1 & 7 \\ -3 & -5 \\ 1 & 5 \end{bmatrix}, \quad Q = \begin{bmatrix} 5/6 & -1/6 \\ 1/6 & 5/6 \\ -3/6 & 1/6 \\ 1/6 & 3/6 \end{bmatrix}
$$

Problem 4 (6.4.15)**.** Find a QR factorization of the matrix in Problem 2.

Problem 5 (6.4.17-22). All vectors and subspaces are in \mathbb{R}^n . Mark each statement (T/F).

- (a) **(T/F)** If $\{v_1, v_2, v_3\}$ is an orthogonal basis for W, then multiplying v_3 by a scalar c gives a new orthogonal basis $\{v_1, v_2, cv_3\}.$
- (b) **(T/F)** If $W = \text{Span}\{x_1, x_2, x_3\}$ with $\{x_1, x_2, x_3\}$ linearly independent, and if $\{v_1, v_2, v_3\}$ is an orthogonal set in W, then $\{v_1, v_2, v_3\}$ is a basis of W.
- (c) **(T/F)** The Gram-Schmidt process produces from a linearly independent set $\{x_1, \ldots, x_p\}$ an orthogonal set $\{v_1, \ldots, v_p\}$ with the property that for each k, the vectors v_1, \ldots, v_k span the same subspace as that spanned by x_1, \ldots, x_k .
- (d) **(T/F)** If x is not in a subspace W, then $x \text{proj}_{W}x$ is not zero.
- (e) **(T/F)** If $A = QR$, where Q has orthonormal columns, then $R = Q^T A$.
- (f) **(T/F)** In a QR factorization, say $A = QR$ (when A has linearly independent columns), the columns of Q form an orthonormal basis for the column space of A.