Math 240 - Discussion April 25th

Problem 1

Let

$$
A=\left[\begin{array}{cc}
1 & 7 \\
-4 & -7 \\
0 & -4 \\
1 & 1
\end{array}\right]
$$

and let $W=\operatorname{Col}(A)$.
(1) Use the Gram-Schmidt process to produce an orthogonal basis for W.
(2) Find a basis of W^{\perp}.
(1) $A=\left[\begin{array}{cc}1 & 7 \\ -4 & -7 \\ 0 & -4 \\ 1 & 1\end{array}\right]$ and find orthogonal basis of W.

1
$c\left[\begin{array}{c}1 \\ -4 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{c}7 \\ -7 \\ -4 \\ 1\end{array}\right] \Rightarrow c$ cannot exist \Rightarrow the set of columns of A is linearly independent
(1) $A=\left[\begin{array}{cc}1 & 7 \\ -4 & -7 \\ 0 & -4 \\ 1 & 1\end{array}\right]$ and find orthogonal basis of W.

2

$$
\begin{aligned}
v_{2} & =a_{2}-\frac{a_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1} \\
v_{1}=a_{1}=\left[\begin{array}{c}
1 \\
-4 \\
0 \\
1
\end{array}\right], & =\left[\begin{array}{c}
7 \\
-7 \\
-4 \\
1
\end{array}\right]-\frac{7+28+0+1}{1+16+0+1}\left[\begin{array}{c}
1 \\
-4 \\
0 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
5 \\
1 \\
-4 \\
-1
\end{array}\right]
\end{aligned}
$$

(1) $A=\left[\begin{array}{cc}1 & 7 \\ -4 & -7 \\ 0 & -4 \\ 1 & 1\end{array}\right]$ and find orthogonal basis of W.

$$
\left\{\left[\begin{array}{c}
1 \\
-4 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
5 \\
1 \\
-4 \\
-1
\end{array}\right]\right\}
$$

(2) $A=\left[\begin{array}{cc}1 & 7 \\ -4 & -7 \\ 0 & -4 \\ 1 & 1\end{array}\right]$ and find a basis for W^{\perp}.

We use the fact that $W^{\perp}=(\operatorname{Col} A)^{\perp}=\operatorname{Null} A^{T}$.

$$
A^{T}=\left[\begin{array}{cccc}
1 & -4 & 0 & 1 \\
7 & -7 & -4 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -4 & 0 & 1 \\
0 & 21 & -4 & -6
\end{array}\right]
$$

Then the general solution is

$$
\left[\begin{array}{c}
4 x_{2}-x_{4} \\
\frac{4 x_{3}+6 x_{4}}{21} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
\frac{16 x_{3}+3 x_{4}}{4 x_{4}^{2}} \\
\frac{4 x_{3}+6 x_{4}}{21} \\
x_{3} \\
x_{4}
\end{array}\right] \Rightarrow\left\{\left[\begin{array}{c}
\frac{16}{21} \\
\frac{4}{21} \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
\frac{3}{21} \\
\frac{6}{21} \\
0 \\
1
\end{array}\right]\right\}
$$

Problem 2

Find an orthogonal basis for the column space of

$$
A=\left[\begin{array}{ccc}
1 & 2 & 5 \\
-1 & 1 & -4 \\
-1 & 4 & -3 \\
1 & -4 & 7 \\
1 & 2 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
1 & 2 & 5 \\
-1 & 1 & -4 \\
-1 & 4 & -3 \\
1 & -4 & 7 \\
1 & 2 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 2 & 5 \\
0 & 3 & 1 \\
0 & 0 & 4 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \text { L.I. } \quad, v_{1}=a_{1}=\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1 \\
1
\end{array}\right]
$$

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
1 & 2 & 5 \\
-1 & 1 & -4 \\
-1 & 4 & -3 \\
1 & -4 & 7 \\
1 & 2 & 1
\end{array}\right], v_{1}=\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1 \\
1
\end{array}\right] \\
v_{2} & =a_{2}-\frac{a_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1} \\
& =\left[\begin{array}{c}
2 \\
1 \\
4 \\
-4 \\
2
\end{array}\right]-\frac{2-1-4-4+2}{5}\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
3 \\
0 \\
3 \\
-3 \\
3
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & 2 & 5 \\
-1 & 1 & -4 \\
-1 & 4 & -3 \\
1 & -4 & 7 \\
1 & 2 & 1
\end{array}\right], v_{1}=\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1 \\
1
\end{array}\right], v_{2}=\left[\begin{array}{l}
3 \\
0 \\
3 \\
-3 \\
3
\end{array}\right] \\
& v_{3}=a_{3}-\frac{a_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}-\frac{a_{3} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2} \\
&=\left[\begin{array}{c}
5 \\
-4 \\
-3 \\
7 \\
1
\end{array}\right]-\frac{5+4+3+7+1}{5}\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1 \\
1
\end{array}\right]-\frac{15+0-9-21+3}{36}\left[\begin{array}{c}
3 \\
0 \\
3 \\
-3 \\
3
\end{array}\right] \\
&=\left[\begin{array}{c}
2 \\
0 \\
2 \\
2 \\
-2
\end{array}\right]
\end{aligned}
$$

Problem 3

The columns of Q were obtained by applying the Gram-Schmidt process to the columns of A. Find an upper triangular matrix R such that $A=Q R$.

$$
A=\left[\begin{array}{cc}
5 & 9 \\
1 & 7 \\
-3 & -5 \\
1 & 5
\end{array}\right], \quad Q=\left[\begin{array}{cc}
5 / 6 & -1 / 6 \\
1 / 6 & 5 / 6 \\
-3 / 6 & 1 / 6 \\
1 / 6 & 3 / 6
\end{array}\right]
$$

$$
A=\left[\begin{array}{cc}
5 & 9 \\
1 & 7 \\
-3 & -5 \\
1 & 5
\end{array}\right], \quad Q=\left[\begin{array}{cc}
5 / 6 & -1 / 6 \\
1 / 6 & 5 / 6 \\
-3 / 6 & 1 / 6 \\
1 / 6 & 3 / 6
\end{array}\right]
$$

$$
A=Q R \Rightarrow Q^{\top} A=Q^{\top} Q R \Rightarrow R=Q^{\top} A
$$

Therefore

$$
R=\frac{1}{6}\left[\begin{array}{cccc}
5 & 1 & -3 & 1 \\
-1 & 5 & 1 & 3
\end{array}\right]\left[\begin{array}{cc}
5 & 9 \\
1 & 7 \\
-3 & -5 \\
1 & 5
\end{array}\right]=\left[\begin{array}{cc}
6 & 12 \\
0 & 6
\end{array}\right]
$$

Problem 4

Find a QR factorization of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 2 & 5 \\
-1 & 1 & -4 \\
-1 & 4 & -3 \\
1 & -4 & 7 \\
1 & 2 & 1
\end{array}\right]
$$

$$
A=\left[\begin{array}{ccc}
1 & 2 & 5 \\
-1 & 1 & -4 \\
-1 & 4 & -3 \\
1 & -4 & 7 \\
1 & 2 & 1
\end{array}\right], \quad\left\{\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{c}
3 \\
0 \\
3 \\
-3 \\
3
\end{array}\right]\left[\begin{array}{c}
2 \\
0 \\
2 \\
2 \\
-2
\end{array}\right]\right\}
$$

The norm of each vectors are $\sqrt{5}, 6$, and 4 . Therefore

$$
Q=\left[\begin{array}{ccc}
1 / \sqrt{5} & 1 / 2 & 1 / 2 \\
-1 / \sqrt{5} & 0 & 0 \\
-1 / \sqrt{5} & 1 / 2 & 1 / 2 \\
1 / \sqrt{5} & -1 / 2 & 1 / 2 \\
1 / \sqrt{5} & 1 / 2 & -1 / 2
\end{array}\right]
$$

$$
A=\left[\begin{array}{ccc}
1 & 2 & 5 \\
-1 & 1 & -4 \\
-1 & 4 & -3 \\
1 & -4 & 7 \\
1 & 2 & 1
\end{array}\right], \quad\left\{\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{c}
3 \\
0 \\
3 \\
-3 \\
3
\end{array}\right]\left[\begin{array}{c}
2 \\
0 \\
2 \\
2 \\
-2
\end{array}\right]\right\}, Q=\left[\begin{array}{ccc}
1 / \sqrt{5} & 1 / 2 & 1 / 2 \\
-1 / \sqrt{5} & 0 & 0 \\
-1 / \sqrt{5} & 1 / 2 & 1 / 2 \\
1 / \sqrt{5} & -1 / 2 & 1 / 2 \\
1 / \sqrt{5} & 1 / 2 & -1 / 2
\end{array}\right]
$$

Therefore,

$$
\begin{aligned}
R=Q^{T} A= & {\left[\begin{array}{ccccc}
1 / \sqrt{5} & -1 / \sqrt{5} & -1 / \sqrt{5} & 1 / \sqrt{5} & 1 / \sqrt{5} \\
1 / 2 & 0 & 1 / 2 & -1 / 2 & 1 / 2 \\
1 / 2 & 0 & 1 / 2 & 1 / 2 & -1 / 2
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 5 \\
-1 & 1 & -4 \\
-1 & 4 & -3 \\
1 & -4 & 7 \\
1 & 2 & 1
\end{array}\right]=\left[\begin{array}{ccc}
5 / \sqrt{5} & -5 / \sqrt{5} & 20 / \sqrt{5} \\
0 & 6 & -2 \\
0 & 0 & 4
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
1 & 2 & 5 \\
-1 & 1 & -4 \\
-1 & 4 & -3 \\
1 & -4 & 7 \\
1 & 2 & 1
\end{array}\right]=\left[\begin{array}{ccc}
\sqrt{5} & -\sqrt{5} & 4 \sqrt{5} \\
0 & 6 & -2 \\
0 & 0 & 4
\end{array}\right] }
\end{aligned}
$$

Problem 5

(1) If $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthogonal basis for W, then multiplying v_{3} by a scalar c gives a new orthogonal basis $\left\{v_{1}, v_{2}, c v_{3}\right\}$.

When $c=0$, the set $\left\{v_{1}, v_{2}, c v_{3}\right\}$ is no longer linearly independent. False. However, if the problem said $c \neq 0$, then it is True.

Problem 5

(2) If $W=\operatorname{Span}\left\{x_{1}, x_{2}, x_{3}\right\}$ with $\left\{x_{1}, x_{2}, x_{3}\right\}$ linearly independent, and if $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthogonal set in W, then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis of W.

Since $\operatorname{dim} W=3$, and any orthogonal set is linearly indendent. $\left\{v_{1}, v_{2}, v_{3}\right\}$ has three vectors. True.

Problem 5

(3) The Gram-Schmidt process produces from a linearly independent set $\left\{x_{1}, \ldots, x_{p}\right\}$ an orthogonal set $\left\{v_{1}, \ldots, v_{p}\right\}$ with the property that for each k, the vectors v_{1}, \ldots, v_{k} span the same subspace as that spanned by x_{1}, \ldots, x_{k}.

This is Theorem 11 from Chapter 6. True.

Problem 5

(9) If x is not in a subspace W, then $x-\operatorname{proj}_{W} x$ is not zero.
$x-\operatorname{Proj}_{W} x=0$ if and only if $x \in W$. True.

Problem 5

(5) If $A=Q R$, where Q has orthonormal columns, then $R=Q^{T} A$. $A=Q R \Rightarrow Q^{T} A=Q^{T} Q R \Rightarrow R=Q^{T} A$. True.

Problem 5

(0) In a $Q R$ factorization, say $A=Q R$ (when A has linearly independent columns), the columns of Q form an orthonormal basis for the column space of A.
Q is orthogonal, so its columns form an orthonormal basis. True.

