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Problem 1

Let
1 7
-4 -7
A= 0 -4
1 1

and let W = Col(A).
© Use the Gram-Schmidt process to produce an orthogonal basis for W.
@ Find a basis of W™

v
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Q0 A= _04 :Z and find orthogonal basis of W.
1 1
1 7
c —4| [=7| = c cannot exist
0| |—4| = thesetof columns of A is linearly independent
1 1
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Q0 A= _04 :Z and find orthogonal basis of W.
1 1
2]
V2 = a— v
F o
1 _ |77 _ 74284041
. _4 14164041
m=a=| 1, | 1]
1 B 5 T
_ 1
~ |4
__1_
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QO A= _04 :4 and find orthogonal basis of W
1 1
1 5
—4 1
0|’ |-4
1 -1
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Q A= _04 :Z and find a basis for W=,
1 1

We use the fact that W' = (Col A)* = Null AT,

;1 -4 0 1] 1 -4 0 1
A‘{7—7—41_>021 —4 —6

Then the general solution is

_ 16x3+3xs E i

4xo — x4 21 21 21
4x3+-6x4 4x3+6x4 4 o6
21 — 21 = 21 21

X3 X3 11710

X4 X4 0 1
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Problem 2
Find an orthogonal basis for the column space of

1 2 5
1 1 -4
A=|-1 4 -3
1 -4 7
1 2 1
1 2 5 1 25 1
1 1 -4 031 ~1
~1 4 -3/ =00 4|LL ,vy=a=|-1
1 -4 7 000 1
1 2 1 000 1
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1 2 5 1
A=10 Sv=|a
1 -4 7 1
1 2 1 1
2 = a-— v
(2] 1
1 -1
_ 2—1-4—442
= | 4| -2 1
—4 1
| 2 ] 1
S
0
= 3
-3
- 3 -
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1 2 5 1 3
-1 1 -4 -1 0
A=71473,V1—71,V2— 3
1 -4 -3

i = a3 Qgivi— ggv

[ 5] 1 3
—4 -1 0
= |-3 _Lﬁ—&-?—&-l 1 _15+0—396—21+3 3
1 -3
|1 1 3

-5 T

0

= 2

2

__2_
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Problem 3

The columns of @ were obtained by applying the Gram-Schmidt process to
the columns of A. Find an upper triangular matrix R such that A = QR.

5 9 5/6 —1/6
17 16 s/6
A=123 5|0 Q= |36 1/6
1 s 1/6  3/6
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5 9 5/6 —1/6
— |1 7 — | 1/6 5/6
A= [3 5} Q - |:3/6 1/6:|

1 5 1/6  3/6

A=QR=QTA=Q"QR=R=Q"A

Therefore
5 9
R_151—3117_612
“6|-15 1 3/|[-3 -5 |0 6
1 5
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Problem 4
Find a QR factorization of the matrix

1 2 5
-1 1 -4
A=1|-1 4 -3
1 -4 7
1 2 1
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The norm of each vectors are /5,6, and 4. Therefore

1/v/5 1/2  1)2
~1/v/5 0 0
Q=1|-1/vV/5 1/2 1/)2
1/vV/5 —-1/2 1/2
1/v/5 1/2 —-1/2
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1 2 5 1713712
-1 1 -4 ~1{ [o]|]o
A= 11 4 3 s -1| |32
1 -4 7 1] ]-3] 12
12 1 1][3][2
Therefore,
1/V5 —-1/v/5 —1/v5 1/V/5 1/V5
R = QTA = |12 0 12 —1/2 1)2
1/2 0 12 12 -1)2
1 2 5 1/V5  1/2
-1 1 -4 -1/V5 0
-1 4 3| = |-1/\6 1)2
1 -4 7 1/V5 -1/2
1 2 1 1/V5  1/2

ri/vs 12 1/2
-1/V5 0 0
,Q= -1/V5 1/2  1/2
1/V/5 —1/2 1/2
L1/Vs 1/2 —1/2
1 2 5]
-1 1 -4 5/vV5 —5/V5 20/V5
-1 4 -3 = 0 6 -
1 -4 7 [o 0 ﬂ
1 2 1]
V5 -5 45
- £ 5
0 0 4
1/2
0 [[V5 —V5 45
1/2 [o 6 q
12|L0o o 4
-1/2
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Problem 5

Q If {v1, s, v3} is an orthogonal basis for W, then multiplying v3 by a
scalar ¢ gives a new orthogonal basis {vi, v, cv3}.

When ¢ = 0, the set {vi, v, cv3} is no longer linearly independent. False.
However, if the problem said ¢ # 0, then it is True.
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Problem 5
@ If W = Span{xy, xp, x3} with {x1,x2, x3} linearly independent, and if
{v1, w2, v3} is an orthogonal set in W, then {v1, v2, v3} is a basis of
Ww.

Since dim W = 3, and any orthogonal set is linearly indendent.
{v1, va, v3} has three vectors. True.
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Problem 5

© The Gram-Schmidt process produces from a linearly independent set

{x1,...,xp} an orthogonal set {v1,...,v,} with the property that for
each k, the vectors vy, ..., vk span the same subspace as that
spanned by xi, ..., k.

This is Theorem 11 from Chapter 6. True.
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Problem 5 J

Q If x is not in a subspace W, then x — proj, x is not zero.

x — Projy,x =0 if and only if x € W. True.
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Problem 5
@ If A= QR, where Q has orthonormal columns, then R = QT A. J

A=QR=QTA=QTQR= R=QTA. True.
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Problem 5

O In a QR factorization, say A = QR (when A has linearly independent
columns), the columns of Q form an orthonormal basis for the column
space of A.

Q is orthogonal, so its columns form an orthonormal basis. True.
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