\qquad

1. Suggested Problems

Problem 1 (1.3.5, 1.3.6). Write a system of equations that is equivalent to the given vector equation.
(a)

$$
x_{1}\left[\begin{array}{r}
6 \\
-1 \\
5
\end{array}\right]+x_{2}\left[\begin{array}{r}
-3 \\
4 \\
0
\end{array}\right]=\left[\begin{array}{r}
1 \\
-7 \\
-5
\end{array}\right]
$$

(b)

$$
x_{1}\left[\begin{array}{r}
-2 \\
3
\end{array}\right]+x_{2}\left[\begin{array}{l}
8 \\
5
\end{array}\right]+x_{3}\left[\begin{array}{r}
1 \\
-6
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Problem 2 (1.3.12). Determine if \boldsymbol{b} is a linear combination of $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}$, and \boldsymbol{a}_{3}.

$$
\boldsymbol{a}_{1}=\left[\begin{array}{r}
1 \\
-2 \\
2
\end{array}\right], \quad \boldsymbol{a}_{2}=\left[\begin{array}{l}
0 \\
5 \\
5
\end{array}\right], \quad \boldsymbol{a}_{3}=\left[\begin{array}{l}
2 \\
0 \\
8
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{r}
-5 \\
11 \\
-7
\end{array}\right]
$$

Problem 3 (1.3.18). Let $\boldsymbol{v}_{1}=\left[\begin{array}{r}1 \\ 0 \\ -2\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{r}-3 \\ 1 \\ 8\end{array}\right]$, and $\boldsymbol{y}=\left[\begin{array}{r}h \\ -5 \\ -3\end{array}\right]$. For what value(s) of h is \boldsymbol{y} in the plane generated by \boldsymbol{v}_{1} and \boldsymbol{v}_{2} ?

2. Additional Problems

Problem 4. Determine which spanning set is a point, a line, a plane, or a space (3-dimensional space).
a)

$$
\operatorname{Span}\left\{\left[\begin{array}{r}
-1 \\
2
\end{array}\right],\left[\begin{array}{l}
4 \\
5
\end{array}\right]\right\}
$$

b)
$\operatorname{Span}\left\{\left[\begin{array}{r}0 \\ -4 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{r}0 \\ -2 \\ 0\end{array}\right]\right\}$
c)
$\operatorname{Span}\left\{\left[\begin{array}{r}\pi \\ 0 \\ \sqrt{2}\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 5\end{array}\right]\right\}$
d)

$$
\operatorname{Span}\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right\}
$$

e)
$\operatorname{Span}\left\{\left[\begin{array}{l}2.5 \\ 1.5\end{array}\right],\left[\begin{array}{r}-10 \\ -6\end{array}\right]\right\}$

Problem 5. Prove that $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}=\operatorname{Span}\{\mathbf{u}, \mathbf{u}+\mathbf{v}\}$ where \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}.

Problem 6. Let $\mathbf{u}=\left[\begin{array}{l}a \\ b\end{array}\right] \in \mathbb{R}^{2}$ be a column vector with two entries. Can you geometrically describe what happens to \mathbf{u} after the matrix muliplication

$$
\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

(Hint: Plug in a vectors such that $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ or $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ to see the pattern.)

Problem 1.

(a)

$$
\begin{aligned}
6 x_{1}-3 x_{2} & =1 \\
-x_{1}+4 x_{2} & =-7 \\
5 x_{1} & =-5
\end{aligned}
$$

(b)

$$
\begin{aligned}
-2 x_{1}+8 x_{2}+x_{3} & =0 \\
3 x_{1}+5 x_{2}-6 x_{3} & =0
\end{aligned}
$$

Problem 2. We just need to solve the linear system associated to the matrix

$$
\left[\begin{array}{rrrr}
1 & 0 & 2 & -5 \\
-2 & 5 & 0 & 11 \\
2 & 5 & 8 & -7
\end{array}\right] \xrightarrow[R_{3}=R_{3}-2 R_{1}]{R_{2}=R_{2}+2 R_{1}}\left[\begin{array}{rrrr}
1 & 0 & 2 & -5 \\
0 & 5 & 4 & 1 \\
0 & 5 & 4 & 3
\end{array}\right]
$$

We see that the linear system is inconsistent, so \boldsymbol{b} is not a linear combination of $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}$, and \boldsymbol{a}_{3}.

Problem 3. We solve $\boldsymbol{v}_{1} x_{1}+\boldsymbol{v}_{2} x_{2}=\boldsymbol{y}$. The second entries tell us that $x_{2}=-5$. Then by backsubstitution, $-2 x_{1}+8 x_{2}=-3 \Rightarrow-2 x_{1}=37 \Rightarrow x_{1}=-\frac{37}{2}$. Therefore, one must have

$$
h=x_{1}-3 x_{2}=-\frac{37}{2}-3 \cdot-5=-\frac{37}{2}+\frac{30}{2}=-\frac{7}{2}
$$

Alternatively, we can row reduce the associated matrix.

$$
\begin{array}{rlr}
{\left[\begin{array}{rrr}
1 & -3 & h \\
0 & 1 & -5 \\
-2 & 8 & -3
\end{array}\right]} & \xrightarrow{R_{3}=R_{3}-8 R_{2}} \\
& \xrightarrow{R_{1}=R_{1}-R_{3}+3 R_{2}}\left[\begin{array}{rrr}
1 & -3 & h \\
0 & 1 & -5 \\
-2 & 0 & 37
\end{array}\right]
\end{array} \xrightarrow{\xrightarrow{R_{3}=-\frac{1}{2} R_{3}}\left[\begin{array}{rrrr}
0 & 0 & h+\frac{37}{2}-15 \\
0 & 1 & -5 \\
1 & 0 & -\frac{37}{2}
\end{array}\right]} \xrightarrow{\left[\begin{array}{rrr}
1 & -3 & h \\
0 & 1 & -5 \\
1 & 0 & -\frac{37}{2}
\end{array}\right]} \xrightarrow{\xrightarrow{R_{1} \leftrightarrow R_{3}}}\left[\begin{array}{rrr}
1 & 0 & -\frac{37}{2} \\
0 & 1 & -5 \\
0 & 0 & h+\frac{7}{2}
\end{array}\right]
$$

Then for the linear system to be consistent, we need $h+\frac{7}{2}=0$, i.e. $h=-\frac{7}{2}$.

Problem 4. Do not worry too much about this question. The goal of the problem was to show you that a span of two vectors is not always a plane, and a span of three vectors is not always a space. You don't have to understand this completely.
(a) The set is spanned by two vectors in \mathbb{R}^{2} that is not scalar multiples of each other. Therefore, it spans the plane \mathbb{R}^{2}.
(b)

$$
\left[\begin{array}{r}
0 \\
-4 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
3
\end{array}\right]+2\left[\begin{array}{r}
0 \\
-2 \\
0
\end{array}\right]
$$

One can show that

$$
\operatorname{Span}\left\{\left[\begin{array}{r}
0 \\
-4 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
3
\end{array}\right],\left[\begin{array}{r}
0 \\
-2 \\
0
\end{array}\right]\right\}=\operatorname{Span}\left\{\left[\begin{array}{l}
0 \\
0 \\
3
\end{array}\right],\left[\begin{array}{r}
0 \\
-2 \\
0
\end{array}\right]\right\}=\operatorname{Span}\left\{\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}
$$

Then now it is easy that spanning set is a plane in \mathbb{R}^{3}.
(c) We first show that

$$
\operatorname{Span}\left\{\left[\begin{array}{c}
\pi \\
0 \\
\sqrt{2}
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
5
\end{array}\right]\right\}=\operatorname{Span}\left\{\left[\begin{array}{l}
\pi \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
5
\end{array}\right]\right\}
$$

This is same as showing that

$$
\left[\begin{array}{c}
\pi \\
0 \\
\sqrt{2}
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
5
\end{array}\right] \in \operatorname{Span}\left\{\left[\begin{array}{l}
\pi \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
5
\end{array}\right]\right\} \text { and }\left[\begin{array}{l}
\pi \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
5
\end{array}\right] \in \operatorname{Span}\left\{\left[\begin{array}{c}
\pi \\
0 \\
\sqrt{2}
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
5
\end{array}\right]\right\}
$$

If you don't see this, don't worry about it yet. We will cover this in more detail later in the course. Next, we have

$$
\operatorname{Span}\left\{\left[\begin{array}{c}
\pi \\
0 \\
\sqrt{2}
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
5
\end{array}\right]\right\}=\operatorname{Span}\left\{\left[\begin{array}{l}
\pi \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
5
\end{array}\right]\right\}=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

where the last spanning set is the entire space \mathbb{R}^{3}.
(d)

$$
\operatorname{Span}\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right\}=\left\{\mathbf{b} \in \mathbb{R}^{3} \left\lvert\, a\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=\mathbf{b}\right.\right\}=\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right\}
$$

The last equality follows from the fact that

$$
a\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
a \cdot 0 \\
a \cdot 0 \\
a \cdot 0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

(e) Since

$$
-4\left[\begin{array}{l}
2.5 \\
1.5
\end{array}\right]=\left[\begin{array}{c}
-10 \\
-6
\end{array}\right]
$$

We have

$$
\operatorname{Span}\left\{\left[\begin{array}{l}
2.5 \\
1.5
\end{array}\right],\left[\begin{array}{r}
-10 \\
-6
\end{array}\right]\right\}=\operatorname{Span}\left\{\left[\begin{array}{l}
2.5 \\
1.5
\end{array}\right]\right\}
$$

A span of a nonzero vector is a line.

Problem 5. To show that two sets are the same, we show two inclusions $\operatorname{Span}\{\mathbf{u}, \mathbf{u}+\mathbf{v}\} \subset \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ and $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\} \subset \operatorname{Span}\{\mathbf{u}, \mathbf{u}+\mathbf{v}\}$.

Let $a_{1} \mathbf{u}+a_{2}(\mathbf{u}+\mathbf{v}) \in \operatorname{Span}\{\mathbf{u}, \mathbf{u}+\mathbf{v}\}$. Then

$$
a_{1} \mathbf{u}+a_{2}(\mathbf{u}+\mathbf{v})=\left(a_{1}+a_{2}\right) \mathbf{u}+a_{2} \mathbf{v} \in \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}
$$

This shows that $\operatorname{Span}\{\mathbf{u}, \mathbf{u}+\mathbf{v}\} \subset \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$.
Conversely, let $a_{1} \mathbf{u}+a_{2} \mathbf{v} \in \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$. Then

$$
a_{1} \mathbf{u}+a_{2} \mathbf{v}=\left(a_{1}-a_{2}\right) \mathbf{u}+a_{2}(\mathbf{u}+\mathbf{v}) \in \operatorname{Span}\{\mathbf{u}, \mathbf{u}+\mathbf{v}\} .
$$

This shows that $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\} \subset \operatorname{Span}\{\mathbf{u}, \mathbf{u}+\mathbf{v}\}$.

Problem 6. We answer by observation. This is NOT a complete rigorous answer.

$$
\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \text { and }\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{r}
-1 \\
0
\end{array}\right]
$$

Therefore, we observed that multiplying the vector by a matrix $\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$ is same as rotating 90° counterclockwise.

