1. Suggested Problems

Problem 1 (1.4.11). Given A and \mathbf{b}, write the augmented matrix for the linear system that corresponds to the matrix equation $A \mathbf{x}=\mathbf{b}$. Then solve the system and write the solution as a vector.

$$
A=\left[\begin{array}{rrr}
1 & 2 & 4 \\
0 & 1 & 5 \\
-2 & -4 & -3
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
-2 \\
2 \\
9
\end{array}\right]
$$

Problem 2 (1.4.17). How many rows of

$$
A=\left[\begin{array}{rrrr}
1 & 3 & 0 & 3 \\
-1 & -1 & -1 & 1 \\
0 & -4 & 2 & -8 \\
2 & 0 & 3 & -1
\end{array}\right]
$$

contains a pivot position? Does the equation $A \mathbf{x}=\mathbf{b}$ have a solution for each \mathbf{b} in \mathbb{R}^{4} ?

Problem 3 (1.4.28). (T/F) If A is an $m \times n$ matrix whose columns do not span \mathbb{R}^{m}, then the equation $A \mathbf{x}=\mathbf{b}$ is inconsistent for some \mathbf{b} in \mathbb{R}^{m}.

2. Additional Problems: Mathematical Logic

Problem 4. Using the contrapositive, prove that "For all $x, y \in \mathbb{N}$, if $x y$ is an even number, then x is even or y is even".

Problem 5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. What is the negation of the proposition "For all $\varepsilon>0$, there exists $\delta>0$ such that $|x-a|<\delta \Rightarrow|f(x)-f(a)|<\varepsilon$ for all $x \in \mathbb{R}^{\prime \prime}$?
Problem 6. Determine whether or not the following proposition is true. "For all 4×6 matrix A that is an augmented matrix of a linear system, if A has a 4 pivot columns, then A is consistent".

Problem 1. The augmented matrix is

$$
\left[\begin{array}{rrrr}
1 & 2 & 4 & -2 \\
0 & 1 & 5 & 2 \\
-2 & -4 & -3 & 9
\end{array}\right] \xrightarrow{R_{3}=R_{3}+2 R 1}\left[\begin{array}{rrrr}
1 & 2 & 4 & -2 \\
0 & 1 & 5 & 2 \\
0 & 0 & 5 & 5
\end{array}\right]
$$

The third row tells us that $x_{3}=1$. The second row tells us that $x_{2}+5=2 \Rightarrow x_{2}=-3$. Finally, the first row tells us that $x_{1}-6+4=-2 \Rightarrow x_{1}=0$. This process is called back-substitution. In vector form, we have

$$
\mathbf{x}=\left[\begin{array}{r}
0 \\
-3 \\
1
\end{array}\right]
$$

Problem 2.

$$
\left[\begin{array}{rrrr}
1 & 3 & 0 & 3 \\
-1 & -1 & -1 & 1 \\
0 & -4 & 2 & -8 \\
2 & 0 & 3 & -1
\end{array}\right] \xrightarrow[R_{4}=R_{4}-2 R_{1}]{R_{2}=R_{2}+R_{1}}\left[\begin{array}{rrrr}
1 & 3 & 0 & 3 \\
0 & 2 & -1 & 4 \\
0 & -4 & 2 & -8 \\
0 & -6 & 3 & -7
\end{array}\right] \xrightarrow[R_{4}=R_{4}+3 R_{2}]{R_{3}=R_{3}+2 R_{2}}\left[\begin{array}{rrrr}
1 & 3 & 0 & 3 \\
0 & 2 & -1 & 4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 5
\end{array}\right]
$$

By switching row 3 and row 4, we see that the matrix has three pivot positions. Now we claim that the equation $A \mathbf{x}=\mathbf{b}$ does not have a solution for each \mathbf{b} in \mathbb{R}^{4}. The negation of this proposition is "there exists \mathbf{b} in \mathbb{R}^{m} such that $A \mathbf{x}=\mathbf{b}$ does not have a solution." Consider

$$
\mathbf{b}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]
$$

The third row of the augmented matrix is $\left[\begin{array}{ccccc}0 & 0 & 0 & 0 & 1\end{array}\right]$ which will make the system inconsistent.
Problem 3. Let $A=\left[\mathbf{a}_{1} \cdots \mathbf{a}_{n}\right]$ a matrix whose columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ do not span \mathbb{R}^{m}. Then by definition of span, there exists $\mathbf{a} \mathbf{b} \in \mathbb{R}^{m}$ such that \mathbf{b} cannot be written as a linear combination of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$. Then this is (logically) equivalent to saying that $x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}$ does not have a solution. In matrix form, this is same as saying that $A \mathbf{x}=\mathbf{b}$ does not have a solution.

One can also note that the statement is the contrapositive item $\mathrm{a} \Rightarrow$ item c of Theorem 4 in page 39 of the textbook. Hence the statement is true.

Problem 4. The contrapositive states that for all $x, y \in \mathbb{N}$, if x and y are odd, then $x y$ is an odd number. Let $x=2 a+1$ and $y=2 b+1$ be odd numbers. Then $x y=(2 a+1)(2 b+1)=4 a b+2 a+2 b+1=$ $2(2 a b+2+b)+1$. Therefore, $x y$ is odd and we have proved the contrapositive.
Problem 5. There exists $\varepsilon>0$ such that for all $\delta>0$, there exists an $x \in \mathbb{R}$ with $|x-a|<\delta$ and $|f(x)-f(a)| \geq \varepsilon$.
Problem 6. We claim that the proposition is false. To show this, we prove that the negation of the proposition is true. The negation is "There exists 4×6 matrix A that is an augmented matrix of linear system where A has 4 pivot columns and A is inconsistent". The matrix

$$
A=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

is inconsistent because the last column of the augmented matrix is a pivot position.

