1. Suggested Problems

Worksheet 4

Feb 8, 2024

Problem 1 (1.4.11). Given A and b, write the augmented matrix for the linear system that corresponds to the matrix equation $A\mathbf{x} = \mathbf{b}$. Then solve the system and write the solution as a vector.

	1	2	4		$\left[-2\right]$
A =	0	1	5,	$\mathbf{b} =$	2
	$\lfloor -2 \rfloor$	-4	$\begin{bmatrix} 4\\5\\-3 \end{bmatrix},$		9

Problem 2 (1.4.17). How many rows of

A =	[1	3	0	$\begin{array}{c} 3 \\ 1 \\ -8 \\ -1 \end{array}$
	$\begin{vmatrix} -1 \\ 0 \end{vmatrix}$	-1	-1	1
	0	-4	2	-8
	2	0	3	-1

contains a pivot position? Does the equation $A\mathbf{x} = \mathbf{b}$ have a solution for each \mathbf{b} in \mathbb{R}^4 ?

Problem 3 (1.4.28). (T/F) If A is an $m \times n$ matrix whose columns do not span \mathbb{R}^m , then the equation $A\mathbf{x} = \mathbf{b}$ is inconsistent for some \mathbf{b} in \mathbb{R}^m .

2. Additional Problems: Mathematical Logic

Problem 4. Using the contrapositive, prove that "For all $x, y \in \mathbb{N}$, if xy is an even number, then x is even or y is even".

Problem 5. Let $f : \mathbb{R} \to \mathbb{R}$ be a function. What is the negation of the proposition "For all $\varepsilon > 0$, there exists $\delta > 0$ such that $|x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon$ for all $x \in \mathbb{R}$ "?

Problem 6. Determine whether or not the following proposition is true. "For all 4×6 matrix A that is an augmented matrix of a linear system, if A has a 4 pivot columns, then A is consistent".

Problem 1. The augmented matrix is

$$\begin{bmatrix} 1 & 2 & 4 & -2 \\ 0 & 1 & 5 & 2 \\ -2 & -4 & -3 & 9 \end{bmatrix} \xrightarrow{R_3 = R_3 + 2R_1} \begin{bmatrix} 1 & 2 & 4 & -2 \\ 0 & 1 & 5 & 2 \\ 0 & 0 & 5 & 5 \end{bmatrix}$$

The third row tells us that $x_3 = 1$. The second row tells us that $x_2 + 5 = 2 \Rightarrow x_2 = -3$. Finally, the first row tells us that $x_1 - 6 + 4 = -2 \Rightarrow x_1 = 0$. This process is called back-substitution. In vector form, we have

$$\mathbf{x} = \begin{bmatrix} 0\\ -3\\ 1 \end{bmatrix}$$

Problem 2.

$$\begin{bmatrix} 1 & 3 & 0 & 3\\ -1 & -1 & -1 & 1\\ 0 & -4 & 2 & -8\\ 2 & 0 & 3 & -1 \end{bmatrix} \xrightarrow{R_2 = R_2 + R_1} \begin{bmatrix} 1 & 3 & 0 & 3\\ 0 & 2 & -1 & 4\\ 0 & -4 & 2 & -8\\ 0 & -6 & 3 & -7 \end{bmatrix} \xrightarrow{R_3 = R_3 + 2R_2} \begin{bmatrix} 1 & 3 & 0 & 3\\ 0 & 2 & -1 & 4\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 5 \end{bmatrix}$$

By switching row 3 and row 4, we see that the matrix has three pivot positions. Now we claim that the equation $A\mathbf{x} = \mathbf{b}$ does not have a solution for each \mathbf{b} in \mathbb{R}^4 . The negation of this proposition is "there exists \mathbf{b} in \mathbb{R}^m such that $A\mathbf{x} = \mathbf{b}$ does not have a solution." Consider

$$\mathbf{b} = \begin{bmatrix} 0\\0\\1\\0\end{bmatrix}$$

The third row of the augmented matrix is $\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$ which will make the system inconsistent.

Problem 3. Let $A = [\mathbf{a}_1 \cdots \mathbf{a}_n]$ a matrix whose columns $\mathbf{a}_1, \ldots, \mathbf{a}_n$ do not span \mathbb{R}^m . Then by definition of span, there exists a $\mathbf{b} \in \mathbb{R}^m$ such that \mathbf{b} cannot be written as a linear combination of $\mathbf{a}_1, \ldots, \mathbf{a}_n$. Then this is (logically) equivalent to saying that $x_1\mathbf{a}_1 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$ does not have a solution. In matrix form, this is same as saying that $A\mathbf{x} = \mathbf{b}$ does not have a solution.

One can also note that the statement is the contrapositive item $a \Rightarrow$ item c of Theorem 4 in page 39 of the textbook. Hence the statement is **true**.

Problem 4. The contrapositive states that for all $x, y \in \mathbb{N}$, if x and y are odd, then xy is an odd number. Let x = 2a + 1 and y = 2b + 1 be odd numbers. Then xy = (2a + 1)(2b + 1) = 4ab + 2a + 2b + 1 = 2(2ab + 2 + b) + 1. Therefore, xy is odd and we have proved the contrapositive.

Problem 5. There exists $\varepsilon > 0$ such that for all $\delta > 0$, there exists an $x \in \mathbb{R}$ with $|x - a| < \delta$ and $|f(x) - f(a)| \ge \varepsilon$.

Problem 6. We claim that the proposition is false. To show this, we prove that the negation of the proposition is true. The negation is "There exists 4×6 matrix *A* that is an augmented matrix of linear system where *A* has 4 pivot columns and *A* is inconsistent". The matrix

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

is inconsistent because the last column of the **augmented matrix** is a pivot position.