1. Suggested Problems

Problem 1 (1.5.11). Describe all solutions of $A\mathbf{x} = 0$ in parametric vector form, where A is row equivalent to

[1	-4	-2	0	3	-5
0	0	1	0	0	-1
0	0	0	0	1	-4
0	0	0	0	0	0

Problem 2 (1.5.27). (T/F) A homogeneous equation is always consistent.

Problem 3 (1.5.36). (T/F) The solution set of $A\mathbf{x} = \mathbf{b}$ is obtained by translating the solution set of $A\mathbf{x} = 0$.

Problem 4 (1.5.48). Construct a 3×3 nonzero matrix A such that the vector $\begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix}$ is a solution of

 $A\mathbf{x} = \mathbf{0}.$

Problem 5 (1.7.4). Determine if the vectors are linearly independent. Justify your answer.

$$\begin{bmatrix} -1\\4 \end{bmatrix}, \begin{bmatrix} -2\\8 \end{bmatrix}$$

Problem 6 (1.7.6). Determine if the columns of the matrix form a linearly independent set. Justify your answer.

$$\begin{bmatrix} -4 & -3 & 0 \\ 0 & -1 & 4 \\ 1 & 0 & 3 \\ 5 & 4 & 6 \end{bmatrix}$$

2. Additional Problems

Problem 7. Let $\mathbf{v} \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Show that $c\mathbf{v} \neq 0$ if and only if $c \neq 0$ and $\mathbf{v} \neq 0$.

Problem 8. Prove that $\{v_1, v_2\}$ are linearly dependent if and only if v_1 and v_2 are scalar multiples of each other.

Problem 9. Find a set $\{v_1, \ldots, v_3\}$ of vectors in \mathbb{R}^4 such that v_2 is not a linear combination of v_1 , but the set is linearly dependent.

Problem 10 (Challenge). Let A be an $m \times n$ matrix,

$$A\mathbf{x} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
 has no solutions and $A\mathbf{x} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$ has exactly one solution.

- (a) Show that $A\mathbf{x} = 0$ has only one solution.
- (b) Can you determine m, n, and the number of pivot points of A?
- (c) Write down a matrix A that fits the description in part (a).

Problem 1. The pivot positions are colored blue.

1	-4	-2	0	3	-5
0	0	1	0	0	-1
0	0	0	0	1	-4
0	0	0	0	0	0

Then the general solution as in Section 1.3 is given by

$$\begin{cases} x_1 = 4x_2 + 2x_3 - 3x_5 + 5x_6 \\ x_2 & \text{free} \\ x_3 = x_6 \\ x_4 & \text{free} \\ x_5 = 4x_6 \\ x_6 & \text{free} \end{cases}$$

We rewrite x_1 in terms of only the free variables x_2 , x_4 , and x_6 . In other words,

$$x_1 = 4x_2 + 2x_6 - 12x_6 + 5x_6 = 4x_2 - 5x_6$$

Then, in parametric vector form, we have

$$\mathbf{x} = \begin{bmatrix} 4x_2 - 5x_6\\ x_2\\ x_6\\ x_4\\ 4x_6\\ x_6 \end{bmatrix} = x_2 \begin{bmatrix} 4\\ 1\\ 0\\ 0\\ 0\\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 0\\ 0\\ 0\\ 1\\ 0\\ 0 \end{bmatrix} + x_6 \begin{bmatrix} -5\\ 0\\ 1\\ 0\\ 4\\ 1 \end{bmatrix}$$

Problem 2. This is **true** as the zero vector is always a solution of a homogeneous equation $A\mathbf{x} = 0$. Remember that the zero vector is called the trivial solution of $A\mathbf{x} = 0$.

Problem 3. (There is subtlety!) If $A\mathbf{x} = \mathbf{b}$ is consistent, then this is *true* exactly Theorem 6 in page 49 and it is true. We can directly prove this as follows. Fix a solution \mathbf{p} of $A\mathbf{x} + \mathbf{b}$. We would like to prove the equality

 $\{\mathbf{v} \mid \mathbf{v} \text{ is a solution of } A\mathbf{x} = \mathbf{b}\} = \{\mathbf{p} + \mathbf{v}_h \mid \mathbf{v}_h \text{ is a solution of } A\mathbf{x} = 0\}$

First, consider a vector of the form $\mathbf{p} + \mathbf{v}_h$. Then $A(\mathbf{p} + \mathbf{v}_h) = A\mathbf{p} + A\mathbf{v}_h = A\mathbf{p} = \mathbf{b}$. Hence $\mathbf{p} + \mathbf{v}_h$ is a solution of $A\mathbf{x} = \mathbf{b}$ showing the inclusion

 $\{\mathbf{v} \mid \mathbf{v} \text{ is a solution of } A\mathbf{x} = \mathbf{b}\} \supset \{\mathbf{p} + \mathbf{v}_h \mid \mathbf{v}_h \text{ is a solution of } A\mathbf{x} = 0\}$

Conversely, let v be a solution of Ax = b. Then A(v - p) = Av - Ap = b - b = 0, so v - p is a solution of Ax = b. Call it $v_h := v - p$. Then since $v = p + (v - p) = w + v_h$, we have

 $\{\mathbf{v} \mid \mathbf{v} \text{ is a solution of } A\mathbf{x} = \mathbf{b}\} \subset \{\mathbf{p} + \mathbf{v}_h \mid \mathbf{v}_h \text{ is a solution of } A\mathbf{x} = 0\}$

which shows the desired equality.

If $A\mathbf{x} = \mathbf{b}$ is inconsistent, this may be a *false* statement. Namely, the solution set of $A\mathbf{x} = \mathbf{b}$ is empty. However, any translate of a solution set of $A\mathbf{x} = 0$ is never empty because the solution set of $A\mathbf{x} = 0$ has at least one element, the trivial solution.

Problem 4. We can write an arbitrary 3×3 matrix as follows

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \quad \Rightarrow \quad A \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} - 2a_{12} + a_{13} \\ a_{21} - 2a_{22} + a_{23} \\ a_{31} - 2a_{32} + a_{33} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

We solve this row-by-row. Namely, find a_{11}, a_{12}, a_{13} such that $a_{11} - 2a_{12} + a_{13} = 0$. The $a_{11} = a_{12} = a_{12} = a_{12} + a_{13} = a_{13} + a_{13}$ $a_{13} = 1$ works! By the same reasoning for other rows, the matrix

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

works.

Problem 5. Since

$$-2\begin{bmatrix}-1\\4\end{bmatrix} + \begin{bmatrix}-2\\8\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix}$$

the two vectors are linearly dependent.

Problem 6. To determine linear dependence, we have to figure out if the homogeneous equation

-3	0	۲ ٦	
-1	4	$ x_1 $	0
0	3	$ x_2 $	= 0
4	6	$\lfloor x_3 \rfloor$	
	$ \begin{array}{r} -3 \\ -1 \\ 0 \\ 4 \end{array} $	$ \begin{array}{ccc} -3 & 0 \\ -1 & 4 \\ 0 & 3 \\ 4 & 6 \end{array} $	$ \begin{bmatrix} -3 & 0 \\ -1 & 4 \\ 0 & 3 \\ 4 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} $

has a nontrivial solution.

The matrix is row reduced to

-4	-3	0	0		0	0	0	0		[1	0	3	0	
0	-1	4	0	,	0	-1	4	0	, .	0	-1	4	0	
1	0	3	0	\rightarrow	1	0	3	0	\rightarrow	0	0	7	0	
5	4	6	0		0	4	-9	0		0	0	0	0	

Since there are three pivots, the only solution is $x_1 = x_2 = x_3 = 0$. In other words, the columns of the matrix is linearly independent.

Problem 7. We use the following property of real numbers. Let a and b in \mathbb{R} , then ab = 0 if and only

Problem 7. We use the following property of real and $c \in \mathbb{R}$. Then $c\mathbf{v} = \begin{bmatrix} cv_1 \\ \vdots \\ cv_n \end{bmatrix}$. Then $c\mathbf{v} = 0$ if and only if $cv_i = 0$ for all i

if and only if c = 0 and $v_i = 0$ for all i if and only if c = 0 and v = 0. This proves the contrapositive of the statement.

Problem 8. Let \mathbf{v}_1 be a scalar multiple of \mathbf{v}_2 , i.e. $\mathbf{v}_1 = c\mathbf{v}_2$. If c = 0, then \mathbf{v}_1 is a zero vector, then $a\mathbf{v}_1 + 0\mathbf{v}_2 = 0$ with any nonzero $a \neq 0$ gives us a linear dependence relation. If $c \neq 0$, then $\mathbf{v}_1 - c\mathbf{v}_2 = 0$ gives us a linear dependence relation, i.e. $\{v_1, v_2\}$ is linearly dependent. Conversely, if $\{v_1, v_2\}$ is linearly dependent. Then we have $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = 0$ with not both c_1 and c_2 zero.

- (a) $c_1 \neq 0$, then $\mathbf{v}_1 = -\frac{c_2}{c_1}\mathbf{v}_2$,
- (b) $c_2 \neq 0$, then $\mathbf{v}_2 = -\frac{c_1}{c_2} \mathbf{v}_1$.

Problem 9. Choose any v_1 . Choose v_2 such that v_2 is not a scalar multiple of v_1 . Then choose v_3 so that v_3 is a linear combination of v_1 and v_2 . For example,

$$\left\{ \underbrace{\begin{bmatrix} 1\\2\\-1\\\end{bmatrix}}_{=\mathbf{v}_1}, \underbrace{\begin{bmatrix} 0\\-1\\3\\\end{bmatrix}}_{=\mathbf{v}_2}, \underbrace{\begin{bmatrix} 1\\0\\5\\\end{bmatrix}}_{=\mathbf{v}_3} \right\}$$

Here we chose $\mathbf{v}_3 = \mathbf{v}_1 + 2\mathbf{v}_2$.

Problem 10.

(a) The solution set of $A\mathbf{x} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ is of the form $\mathbf{p} + \mathbf{v}_h$ where \mathbf{p} is a solution to the equation and

 \mathbf{v}_h is the solution to $A\mathbf{x} = 0$. If the equation $A\mathbf{x} = 0$ has infinitely many solutions, $A\mathbf{x} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$ would have infinitely many solutions. We proved the contrapositve.

(b) Since the vector on the right-hand side is in ℝ³, in order for the matrix multiplication to make sense, m = 3. As Ax = 0 has only one solution, we have n ≤ 3. This is because if n ≥ 4, you will have a free variable which will imply that Ax = 0 has infinitely many solutions. If n = 3, [0]

$$A\mathbf{x} = \begin{bmatrix} 1\\ 0 \end{bmatrix}$$
 having exactly one solution would mean that, A would have three pivot columns.

However, this contradicts the fact that $A\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ has no solutions by Theorem 4 in page 39. In particular, n = 1 or n = 2.

(c) For
$$n = 1$$
, $A = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ works. For $n = 2$, $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$ works. The column vectors are chosen so

that the third coordinates are zero so that the column vectors cannot span $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$, and $\mathbf{x} = \begin{bmatrix} 0\\1 \end{bmatrix}$

is a solution to $A\mathbf{x} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$.