\qquad

1. Suggested Problems

Problem 1 (1.5.11). Describe all solutions of $A \mathbf{x}=0$ in parametric vector form, where A is row equivalent to

$$
\left[\begin{array}{rrrrrr}
1 & -4 & -2 & 0 & 3 & -5 \\
0 & 0 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & -4 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Problem 2 (1.5.27). (T/F) A homogeneous equation is always consistent.
Problem 3 (1.5.36). (T/F) The solution set of $A \mathbf{x}=\mathbf{b}$ is obtained by translating the solution set of $A \mathrm{x}=0$.
Problem 4 (1.5.48). Construct a 3×3 nonzero matrix A such that the vector $\left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right]$ is a solution of $A \mathrm{x}=0$.

Problem 5 (1.7.4). Determine if the vectors are linearly independent. Justify your answer.

$$
\left[\begin{array}{r}
-1 \\
4
\end{array}\right],\left[\begin{array}{r}
-2 \\
8
\end{array}\right]
$$

Problem 6 (1.7.6). Determine if the columns of the matrix form a linearly independent set. Justify your answer.

$$
\left[\begin{array}{rrr}
-4 & -3 & 0 \\
0 & -1 & 4 \\
1 & 0 & 3 \\
5 & 4 & 6
\end{array}\right]
$$

2. Additional Problems

Problem 7. Let $\mathbf{v} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$. Show that $c \mathbf{v} \neq 0$ if and only if $c \neq 0$ and $\mathbf{v} \neq 0$.
Problem 8. Prove that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ are linearly dependent if and only if \mathbf{v}_{1} and \mathbf{v}_{2} are scalar multiples of each other.

Problem 9. Find a set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{3}\right\}$ of vectors in \mathbb{R}^{4} such that \mathbf{v}_{2} is not a linear combination of \mathbf{v}_{1}, but the set is linearly dependent.

Problem 10 (Challenge). Let A be an $m \times n$ matrix,

$$
A \mathbf{x}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \text { has no solutions and } A \mathbf{x}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \text { has exactly one solution. }
$$

(a) Show that $A \mathbf{x}=0$ has only one solution.
(b) Can you determine m, n, and the number of pivot points of A ?
(c) Write down a matrix A that fits the description in part (a).

Problem 1. The pivot positions are colored blue.

$$
\left[\begin{array}{rrrrrr}
\mathbf{1} & -4 & -2 & 0 & 3 & -5 \\
0 & 0 & \mathbf{1} & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & \mathbf{1} & -4 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Then the general solution as in Section 1.3 is given by

$$
\begin{cases}x_{1}= & 4 x_{2}+2 x_{3}-3 x_{5}+5 x_{6} \\ x_{2} & \text { free } \\ x_{3}= & x_{6} \\ x_{4} & \text { free } \\ x_{5}= & 4 x_{6} \\ x_{6} & \text { free }\end{cases}
$$

We rewrite x_{1} in terms of only the free variables x_{2}, x_{4}, and x_{6}. In other words,

$$
x_{1}=4 x_{2}+2 x_{6}-12 x_{6}+5 x_{6}=4 x_{2}-5 x_{6}
$$

Then, in parametric vector form, we have

$$
\mathbf{x}=\left[\begin{array}{r}
4 x_{2}-5 x_{6} \\
x_{2} \\
x_{6} \\
x_{4} \\
4 x_{6} \\
x_{6}
\end{array}\right]=x_{2}\left[\begin{array}{l}
4 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+x_{6}\left[\begin{array}{r}
-5 \\
0 \\
1 \\
0 \\
4 \\
1
\end{array}\right]
$$

Problem 2. This is true as the zero vector is always a solution of a homogeneous equation $A \mathrm{x}=0$. Remember that the zero vector is called the trivial solution of $A \mathbf{x}=0$.

Problem 3. (There is subtlety!) If $A \mathbf{x}=\mathbf{b}$ is consistent, then this is true exactly Theorem 6 in page 49 and it is true. We can directly prove this as follows. Fix a solution \mathbf{p} of $A \mathbf{x}+\mathbf{b}$. We would like to prove the equality

$$
\{\mathbf{v} \mid \mathbf{v} \text { is a solution of } A \mathbf{x}=\mathbf{b}\}=\left\{\mathbf{p}+\mathbf{v}_{h} \mid \mathbf{v}_{h} \text { is a solution of } A \mathbf{x}=0\right\}
$$

First, consider a vector of the form $\mathbf{p}+\mathbf{v}_{h}$. Then $A\left(\mathbf{p}+\mathbf{v}_{h}\right)=A \mathbf{p}+A \mathbf{v}_{h}=A \mathbf{p}=\mathbf{b}$. Hence $\mathbf{p}+\mathbf{v}_{h}$ is a solution of $A \mathbf{x}=\mathbf{b}$ showing the inclusion

$$
\{\mathbf{v} \mid \mathbf{v} \text { is a solution of } A \mathbf{x}=\mathbf{b}\} \supset\left\{\mathbf{p}+\mathbf{v}_{h} \mid \mathbf{v}_{h} \text { is a solution of } A \mathbf{x}=0\right\}
$$

Conversely, let \mathbf{v} be a solution of $A \mathbf{x}=\mathbf{b}$. Then $A(\mathbf{v}-\mathbf{p})=A \mathbf{v}-A \mathbf{p}=\mathbf{b}-\mathbf{b}=0$, so $\mathbf{v}-\mathbf{p}$ is a solution of $A \mathbf{x}=\mathbf{b}$. Call it $\mathbf{v}_{h}:=\mathbf{v}-\mathbf{p}$. Then since $\mathbf{v}=\mathbf{p}+(\mathbf{v}-\mathbf{p})=\mathbf{w}+\mathbf{v}_{h}$, we have

$$
\{\mathbf{v} \mid \mathbf{v} \text { is a solution of } A \mathbf{x}=\mathbf{b}\} \subset\left\{\mathbf{p}+\mathbf{v}_{h} \mid \mathbf{v}_{h} \text { is a solution of } A \mathbf{x}=0\right\}
$$

which shows the desired equality.
If $A \mathbf{x}=\mathbf{b}$ is inconsistent, this may be a false statement. Namely, the solution set of $A \mathbf{x}=\mathbf{b}$ is empty. However, any translate of a solution set of $A \mathbf{x}=0$ is never empty because the solution set of $A \mathrm{x}=0$ has at least one element, the trivial solution.

Problem 4. We can write an arbitrary 3×3 matrix as follows

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \Rightarrow A\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right]=\left[\begin{array}{l}
a_{11}-2 a_{12}+a_{13} \\
a_{21}-2 a_{22}+a_{23} \\
a_{31}-2 a_{32}+a_{33}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

We solve this row-by-row. Namely, find a_{11}, a_{12}, a_{13} such that $a_{11}-2 a_{12}+a_{13}=0$. The $a_{11}=a_{12}=$ $a_{13}=1$ works! By the same reasoning for other rows, the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

works.

Problem 5. Since

$$
-2\left[\begin{array}{r}
-1 \\
4
\end{array}\right]+\left[\begin{array}{r}
-2 \\
8
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

the two vectors are linearly dependent.

Problem 6. To determine linear dependence, we have to figure out if the homogeneous equation

$$
\left[\begin{array}{rrr}
-4 & -3 & 0 \\
0 & -1 & 4 \\
1 & 0 & 3 \\
5 & 4 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=0
$$

has a nontrivial solution.
The matrix is row reduced to

$$
\left[\begin{array}{rrrr}
-4 & -3 & 0 & 0 \\
0 & -1 & 4 & 0 \\
1 & 0 & 3 & 0 \\
5 & 4 & 6 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
0 & 0 & 0 & 0 \\
0 & -1 & 4 & 0 \\
1 & 0 & 3 & 0 \\
0 & 4 & -9 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 0 & 3 & 0 \\
0 & -1 & 4 & 0 \\
0 & 0 & 7 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since there are three pivots, the only solution is $x_{1}=x_{2}=x_{3}=0$. In other words, the columns of the matrix is linearly independent.

Problem 7. We use the following property of real numbers. Let a and b in \mathbb{R}, then $a b=0$ if and only if $a=0$ or $b=0$. Let $\mathbf{v} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$. Then $c \mathbf{v}=\left[\begin{array}{r}c v_{1} \\ \vdots \\ c v_{n}\end{array}\right]$. Then $c \mathbf{v}=0$ if and only if $c v_{i}=0$ for all i if and only if $c=0$ and $v_{i}=0$ for all i if and only if $c=0$ and $\mathbf{v}=0$. This proves the contrapositive of the statement.

Problem 8. Let \mathbf{v}_{1} be a scalar multiple of \mathbf{v}_{2}, i.e. $\mathbf{v}_{1}=c \mathbf{v}_{2}$. If $c=0$, then \mathbf{v}_{1} is a zero vector, then $a \mathbf{v}_{1}+0 \mathbf{v}_{2}=0$ with any nonzero $a \neq 0$ gives us a linear dependence relation. If $c \neq 0$, then $\mathbf{v}_{1}-c \mathbf{v}_{2}=0$ gives us a linear dependence relation, i.e. $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly dependent. Conversely, if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly dependent. Then we have $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}=0$ with not both c_{1} and c_{2} zero.
(a) $c_{1} \neq 0$, then $\mathbf{v}_{1}=-\frac{c_{2}}{c_{1}} \mathbf{v}_{2}$,
(b) $c_{2} \neq 0$, then $\mathbf{v}_{2}=-\frac{c_{1}}{c_{2}} \mathbf{v}_{1}$.

Problem 9. Choose any \mathbf{v}_{1}. Choose \mathbf{v}_{2} such that \mathbf{v}_{2} is not a scalar multiple of \mathbf{v}_{1}. Then choose \mathbf{v}_{3} so that \mathbf{v}_{3} is a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}. For example,

$$
\{\underbrace{\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right]}_{=\mathbf{v}_{1}} \underbrace{\left[\begin{array}{r}
0 \\
-1 \\
3
\end{array}\right]}_{=\mathbf{v}_{2}}, \underbrace{\left[\begin{array}{l}
1 \\
0 \\
5
\end{array}\right]}_{=\mathbf{v}_{3}}\}
$$

Here we chose $\mathbf{v}_{3}=\mathbf{v}_{1}+2 \mathbf{v}_{2}$.

Problem 10.

(a) The solution set of $A \mathbf{x}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ is of the form $\mathbf{p}+\mathbf{v}_{h}$ where \mathbf{p} is a solution to the equation and \mathbf{v}_{h} is the solution to $A \mathbf{x}=0$. If the equation $A \mathbf{x}=0$ has infinitely many solutions, $A \mathbf{x}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ would have infinitely many solutions. We proved the contrapositve.
(b) Since the vector on the right-hand side is in \mathbb{R}^{3}, in order for the matrix multiplication to make sense, $m=3$. As $A \mathbf{x}=0$ has only one solution, we have $n \leq 3$. This is because if $n \geq 4$, you will have a free variable which will imply that $A \mathbf{x}=0$ has infinitely many solutions. If $n=3$, $A \mathbf{x}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ having exactly one solution would mean that, A would have three pivot columns. However, this contradicts the fact that $A \mathbf{x}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ has no solutions by Theorem 4 in page 39 . In particular, $n=1$ or $n=2$.
(c) For $n=1, A=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ works. For $n=2, A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$ works. The column vectors are chosen so that the third coordinates are zero so that the column vectors cannot span $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, and $\mathbf{x}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is a solution to $A \mathbf{x}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$.

