1. Suggested Problems

Problem 1 (1.7.25). (T/F) The columns of any 4×5 matrix are linearly dependent.

Problem 2 (1.7.37). Given

$$
A=\left[\begin{array}{rrr}
2 & 3 & 5 \\
-5 & 1 & -4 \\
-3 & -1 & -4 \\
1 & 0 & 1
\end{array}\right]
$$

observe that the third column is the sum of the first two columns. Find a nontrivial solution of $A \mathrm{x}=0$.

For problem 3 and 4, determine whether each statement is true. If true, give justifications. If false, show a specific example (called counterexample) to show that the statement is not true. Below F-C means that if you claim that the statement is false, you need to provide a counterexample.
Problem 3 (1.7.39). (T/F-C) If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}$ are in \mathbb{R}^{4} and $\mathbf{v}_{3}=2 \mathbf{v}_{1}+\mathbf{v}_{2}$, then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right\}$ is linearly dependent.

Problem 4 (1.7.40). (T/F-C) If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}$ are in \mathbb{R}^{4} and $\mathbf{v}_{3}=0$, then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right\}$ is linearly dependent.

Problem 5 (1.8.11). Let

$$
\mathbf{b}=\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right] \text { and } A=\left[\begin{array}{rrrr}
1 & -4 & 7 & -5 \\
0 & 1 & -4 & 3 \\
2 & -6 & 6 & -4
\end{array}\right]
$$

Is \mathbf{b} in the range of the linear tranformation $\mathbf{x} \mapsto A \mathbf{x}$? Why or why not?

Problem 6 (1.8.13). Use a rectangular coordinate system to plot

$$
\mathbf{u}=\left[\begin{array}{l}
5 \\
2
\end{array}\right] \text { and } \mathbf{v}=\left[\begin{array}{r}
-2 \\
4
\end{array}\right]
$$

and their images under the transformation

$$
T(\mathbf{x})=\left[\begin{array}{rr}
.5 & 0 \\
0 & .5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Problem 7 (1.8.19). Let

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \mathbf{y}_{1}=\left[\begin{array}{l}
2 \\
5
\end{array}\right], \text { and } \mathbf{y}_{2}=\left[\begin{array}{r}
-1 \\
6
\end{array}\right]
$$

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation that maps \mathbf{e}_{1} into \mathbf{y}_{1} and maps \mathbf{e}_{2} into \mathbf{y}_{2}. Find the images of $\left[\begin{array}{r}5 \\ -3\end{array}\right]$ and $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.

2. Additional Problems

Problem 8. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be an affine transformation, i.e. defined by

$$
\mathbf{x} \mapsto A \mathbf{x}+\mathbf{b}
$$

where A is an $m \times n$ matrix and $\mathbf{b} \in \mathbb{R}^{m}$. Show that T is linear if and only if $\mathbf{b}=0$.

Problem 9.

(a) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation defined by

$$
T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{r}
7 \\
-3
\end{array}\right] \text { and } T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{r}
-1 \\
6
\end{array}\right]
$$

Show that you can always find a matrix A such that $T(\mathbf{x})=A \mathbf{x}$.
(b) (Challenge) Can you generalize (a) to an arbitrary linear transformation? In other words, let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Find a matrix A such that $T(\mathbf{x})=A \mathbf{x}$. What is the size of A ?
Problem 10. (Challenge) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation defined by $\mathbf{x} \mapsto A \mathbf{x}$, and let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation defined by $\mathbf{x} \mapsto B \mathbf{x}$ where

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]
$$

Without using matrix multiplication and using similar strategy to Problem 9, show that the composition $(T \circ S)(\mathbf{x})=T(S(\mathbf{x}))=C \mathbf{x}$ where

$$
C=\left[\begin{array}{ll}
a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} \\
a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22}
\end{array}\right]
$$

Problem 1. We have 5 vectors in \mathbb{R}^{4}. Since there are more vectors than the entries, they are linearly dependent by theorem 8 in page 63 .

Problem 2. If we write the last sentence with mathematical expression, we have

$$
\left[\begin{array}{r}
2 \\
-5 \\
-3 \\
1
\end{array}\right]+\left[\begin{array}{r}
3 \\
1 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{r}
5 \\
-4 \\
-4 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{r}
2 \\
-5 \\
-3 \\
1
\end{array}\right]+\left[\begin{array}{r}
3 \\
1 \\
-1 \\
0
\end{array}\right]-\left[\begin{array}{r}
5 \\
-4 \\
-4 \\
1
\end{array}\right]=0
$$

Then $x_{1}=1, x_{2}=1$, and $x_{3}=-1$ is the solution to the vector equation. Therefore

$$
\mathbf{x}=\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right]
$$

is a solution to the corresponding matrix equation.

Problem 3. This is true because,

$$
2 \mathbf{v}_{1}+\mathbf{v}_{2}-3 \mathbf{v}_{3}+0 \mathbf{v}_{4}=0
$$

Problem 4. This is true because

$$
0 \mathbf{v}_{1}+0 \mathbf{v}_{2}+\mathbf{v}_{3}+0 \mathbf{v}_{4}=0
$$

Problem 5.

$$
\left.\begin{array}{rlrrr}
{\left[\begin{array}{rrrr}
1 & -4 & 7 & -5 \\
0 & 1 & -4 & 3 \\
1 \\
2 & -6 & 6 & -4
\end{array}\right]}
\end{array}\right] \xrightarrow{\xrightarrow{R_{3}=R_{3}-2 R_{1}}\left[\begin{array}{rrrrr}
1 & -4 & 7 & -5 & 1 \\
0 & 1 & -4 & 3 & 1 \\
0 & 2 & -8 & 6 & 2
\end{array}\right]} \begin{aligned}
& \xrightarrow{R_{3}=R_{3}-2 R_{2}}\left[\begin{array}{rrrrr}
1 & -4 & 7 & -5 & 1 \\
0 & 1 & -4 & 3 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

The last column is not a pivot column, so there exists \mathbf{x} such that $A \mathbf{x}=\mathbf{b}$. In other words, \mathbf{b} is in the range of the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$.
Problem 6. Observe that

$$
\left[\begin{array}{rr}
.5 & 0 \\
0 & .5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
.5 x_{1} \\
.5 x_{2}
\end{array}\right]
$$

This is what the textbook calls contraction (see Example 4 in page 71). The linear transformation shrinks the length of the vector by half.

Problem 7. The key point is to write both

$$
\left[\begin{array}{r}
5 \\
-3
\end{array}\right] \text { and }\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

as linear combinations of \mathbf{e}_{1} and \mathbf{e}_{2}. We have

$$
\left[\begin{array}{r}
5 \\
-3
\end{array}\right]=5 \mathbf{e}_{1}-3 \mathbf{e}_{2}
$$

Therefore

$$
T\left(\left[\begin{array}{r}
5 \\
-3
\end{array}\right]\right)=T\left(5 \mathbf{e}_{1}-3 \mathbf{e}_{2}\right)=5 T\left(\mathbf{e}_{1}\right)-3 T\left(\mathbf{e}_{2}\right)=5 \mathbf{y}_{1}-3 \mathbf{y}_{2}=\left[\begin{array}{r}
13 \\
7
\end{array}\right]
$$

Similarly, we get

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1}-x_{2} \\
5 x_{1}+6 x_{2}
\end{array}\right]
$$

Problem 8. We have $T(0)=\mathbf{b}$ and $T(0)+T(0)=2 \mathbf{b}$. If T is linear, $\mathbf{b}=2 \mathbf{b}$, therefore $\mathbf{b}=0$. Conversely, suppose $\mathbf{b}=0$. Then $T(\mathbf{x})=A \mathbf{x}$ is a matrix transformation, and matrix transformations are linear.

Problem 9.

(a) Let

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

If $T(\mathbf{x})=A \mathbf{x}$, then

$$
T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
a_{11} \\
a_{21}
\end{array}\right] \text { but we know } T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{r}
7 \\
-3
\end{array}\right]
$$

Hence $\left[\begin{array}{l}a_{11} \\ a_{21}\end{array}\right]=\left[\begin{array}{r}7 \\ -3\end{array}\right]$. Similarly, we can show that $\left[\begin{array}{l}a_{12} \\ a_{22}\end{array}\right]=\left[\begin{array}{r}-1 \\ 6\end{array}\right]$. To conclude, we obtained

$$
A=\left[\begin{array}{rr}
7 & -1 \\
-3 & 6
\end{array}\right]
$$

(b) We first discuss the general situation. Denote by $\mathbf{e}_{i}=\left[\begin{array}{c}0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right]$ be a vector with 1 at i th entry and 0 everywhere else. Note that for any matrix $B, B e_{i}=\mathbf{b}_{i}$ where \mathbf{b}_{i} is the i th column vector of B. Also, for any vector $\mathbf{x}=\left[\begin{array}{r}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$, we have $\mathbf{x}=x_{1} \mathbf{e}_{1}+\cdots+x_{n} \mathbf{e}_{n}$.

Now back to the situation of the problem, we name $\mathbf{a}_{i}=T\left(\mathbf{e}_{i}\right)$. We can form the matrix $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}\end{array}\right]$ which we can see is an $m \times n$ matrix. Then

$$
T(\mathbf{x})=x_{1} T\left(\mathbf{e}_{1}\right)+\cdots+x_{n} T\left(\mathbf{e}_{n}\right)=x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}=A \mathbf{x}
$$

which is the desired result.
Problem 10. Rewrite $A=\left[\begin{array}{ll}\mathbf{a}_{1} & \mathbf{a}_{2}\end{array}\right]$ and $B=\left[\begin{array}{ll}\mathbf{b}_{1} & \mathbf{b}_{2}\end{array}\right]$. Let $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Then

$$
T\left(\mathbf{e}_{1}\right)=\mathbf{a}_{1}, T\left(\mathbf{e}_{1}\right)=\mathbf{a}_{2}, S\left(\mathbf{e}_{1}\right)=\mathbf{b}_{1}, S\left(\mathbf{e}_{2}\right)=\mathbf{b}_{2}
$$

Now $T\left(S\left(\mathbf{e}_{1}\right)\right)=T\left(\mathbf{b}_{1}\right)=T\left(b_{11} \mathbf{e}_{1}+b_{21} \mathbf{e}_{2}\right)=b_{11} \mathbf{a}_{1}+b_{21} \mathbf{a}_{2}=\left[\begin{array}{l}b_{11} a_{11}+b_{21} a_{12} \\ b_{11} a_{21}+b_{21} a_{22}\end{array}\right]$. We can do the same and obtain

$$
T\left(S\left(\mathbf{e}_{2}\right)\right)=T\left(\mathbf{b}_{2}\right)=T\left(b_{12} \mathbf{e}_{1}+b_{22} \mathbf{e}_{2}\right)=b_{12} \mathbf{a}_{1}+b_{22} \mathbf{a}_{2}=\left[\begin{array}{l}
b_{12} a_{11}+b_{22} a_{12} \\
b_{12} a_{21}+b_{22} a_{22}
\end{array}\right]
$$

which is the what we want.

