1. Suggested Problems

Problem 1 (1.9.2). $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, T\left(\mathbf{e}_{1}\right)=(1,3), T\left(\mathbf{e}_{2}\right)=(4,2)$, and $T\left(\mathbf{e}_{3}\right)=(-5,4)$ where $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ are the columns of the 3×3 identity matrix. Find the standard matrix of T.

Problem 2 (1.9.3). $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotates points (about the origin) through $3 \pi / 2$ radians (in the counterclockwise direction). Find the standard matrix of T.

Problem 3 (1.9.17). Show that

$$
T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(0, x_{1}+x_{2}, x_{2}+x_{3}, x_{3}+x_{4}\right)
$$

is a linear transforamtion by finding a matrix that implements the mapping. Note that x_{1}, x_{2}, \ldots are not vectors but are entries in vectors.

Problem 4 (1.9.28). (T/F) Not every linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} is a matrix transformation.
Problem 5 (1.9.31). (T/F) A is a 3×2 matrix, then the transformation $\mathrm{x} \mapsto A \mathrm{x}$ cannot be one-to-one.
Problem 6 (1.9.32). (T/F) A is a 3×2 matrix, then the transformation $\mathbf{x} \mapsto A \mathbf{x}$ cannot map \mathbb{R}^{2} onto \mathbb{R}^{3}.

2. Additional Problems

Problem 7. Prove that projection $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ onto the x_{1}-axis is neither one-to-one nor onto.
Problem 8. Suppose $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation corresponding to i) rotating $\frac{\pi}{2}$ radians counterclock-wise, then ii) reflecting with respect to the x_{2}-axis, and then iii) horizontally shearing by a factor of 2 units.
(a) What is the standard matrix of T ?
(b) What is the linear transformation that undoes T ? To be precise, find a linear transformation $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $S(T(\mathbf{x}))=\mathbf{x}$. (Hint: if you horizontally sheared by a factor of 2 units, then horizonally shearing by -2 units will undo the transformation.)
Let $f: A \rightarrow B$ be a function (or a transformation). The function $g: B \rightarrow A$ is a left inverse if $g(f(a))=a$ for all $a \in A$. The function is called a right inverse if $f(g(b))=b$ for all $b \in B$.

Problem 9. Prove that
(a) A function f is one-to-one if and only if f has a left inverse.
(b) A function f is onto if and only if f has a right inverse.
(c) A function g is called an inverse of f if g is both a left inverse and a right inverse. Show that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then g is also a linear transformation.

Problem 1. The image $T\left(\mathbf{e}_{i}\right)$ of \mathbf{e}_{i} gives the i th column of the standard matrix A of T. Therefore

$$
A=\left[\begin{array}{rrr}
1 & 4 & -5 \\
3 & 2 & 4
\end{array}\right]
$$

Problem 2. Recall that the matrix that corresponds to rotation about the origin through θ radians in the counterclockwise direction

$$
A_{\theta}=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Then

$$
\cos \left(\frac{3 \pi}{2}\right)=0, \quad \sin \left(\frac{3 \pi}{2}\right)=-1
$$

Therefore

$$
A_{3 \pi / 2}=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

Problem 3. This can be solved by trial-and-error.

$$
\left[\begin{array}{r}
0 \\
x_{1}+x_{2} \\
x_{2}+x_{3} \\
x_{3}+x_{4}
\end{array}\right]=\left[\begin{array}{llll}
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ?
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\underbrace{\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]}_{\text {answer }}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

Problem 4. False because all linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has an associated standard matrix A such that $T(\mathbf{x})=A \mathbf{x}$.
Problem 5. Let T be a linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ as the standard matrix is a 3×2 matrix. The linear transformation $T\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}, 0\right)$ is one-to-one because

$$
T\left(x_{1}, x_{2}\right)=0 \Rightarrow\left(x_{1}, x_{2}, 0\right)=0 \Rightarrow\left(x_{1}, x_{2}\right)=0
$$

Therefore the statement is false.
Problem 6. We have T maps \mathbb{R}^{2} onto $\mathbb{R}^{3} \Leftrightarrow$ for every $\mathbf{b} \in \mathbb{R}^{3}, A \mathbf{x}=\mathbf{b}$ has a solution (where A is the standard matrix of T) \Leftrightarrow every row of A must have a pivot position (by Theorem 4). Since there are more rows to columns, the above cannot be true. The statement is true.

Problem 7. Recall that the projection onto the x_{1}-axis is given by $T\left(x_{1}, x_{2}\right)=\left(x_{1}, 0\right)$. As we have $T(1,0)=(1,0)=T(1,1)$ with $(1,0) \neq(1,1), T$ is not one-to-one. Also, $(1,1)$ is not in the range of T because images of T always needs to have zero in their x_{2}-coordinate.

Problem 8.

(a) The linear transformation T can be thought as a composition of three linear transformations. Therefore, the standard matrix of T is a product of three matrices. Namely,

$$
\underbrace{\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]}_{\text {shearing by }} \underbrace{\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]}_{x_{2} \text {-reflection rotation by } \pi / 2} \underbrace{\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]}=\left[\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right]
$$

Notice how the first linear transformation you apply starts from the right.
(b) We want to undo the transformation. We begin by shearing by -2 , reflecting with respect to the x_{2}-axis, and rotating $-\pi / 2$ radians. Then the standard matrix of the undo linear transformation is

$$
\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & -2 \\
0 & 1
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
1 & -2
\end{array}\right]
$$

Problem 9.

(a) Suppose f is one-to-one. Then define $g: B \rightarrow A$ as follows. Pick $a_{0} \in A$. Then define

$$
g(b)= \begin{cases}a_{b} & \text { if } b=f\left(a_{b}\right) \text { is in the range of } f \\ a_{0} & \text { if } b \text { is not in the range of } f\end{cases}
$$

Then by definition, $g(f(a))=a$. In other words, g is the left inverse of f.
Suppose f has a left inverse g. Then $f\left(a_{1}\right)=f\left(a_{2}\right) \Rightarrow a_{1}=g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right)=a_{2}$. Therefore, f is one-to-one.
(b) Suppose f is onto. Then define $g: B \rightarrow A$ as follows: for all $b \in B$, choose a single a_{b} such that $f\left(a_{b}\right)=b$. There can be many, but we choose one. Then we can define $g(b)=a_{b}$. The composition $f(g(b))=f\left(a_{b}\right)=b$, so g is a right inverse of f.

Suppose f has a right inverse. For every $b \in B$, let $a_{b}=g(b)$. Then $f\left(a_{b}\right)=f(g(b))=b$, so f is onto.
Problem 10. Let g be an inverse of f. Let $\mathbf{b}_{1}, \mathbf{b}_{2} \in \mathbb{R}^{m}$. Since g is a right inverse of f, f is onto. Therefore, there exists $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathbb{R}^{n}$ such that $f\left(\mathbf{x}_{1}\right)=\mathbf{b}_{1}$ and $f\left(\mathbf{x}_{2}\right)=\mathbf{b}_{2}$. In fact, $\mathbf{x}_{1}=g\left(\mathbf{b}_{1}\right)$ and $\mathbf{x}_{2}=g\left(\mathbf{b}_{2}\right) .\left(f\left(\mathbf{x}_{i}\right)=\mathbf{b}_{i} \Rightarrow g\left(\mathbf{x}_{i}\right)=g\left(\mathbf{b}_{i}\right) \Rightarrow \mathbf{x}_{i}=g\left(\mathbf{b}_{i}\right)\right)$ Then $g\left(\mathbf{b}_{1}+\mathbf{b}_{2}\right)=g\left(f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)\right)=$ $g\left(f\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)\right)=\mathbf{x}_{1}+\mathbf{x}_{2}=g\left(\mathbf{b}_{1}\right)+g\left(\mathbf{b}_{2}\right)$. Similarly, let $\mathbf{b} \in \mathbb{R}^{m}$ and $\mathbf{x} \in \mathbb{R}^{n}$ such that $\mathbf{b}=f(\mathbf{x})$. Then $g(\mathbf{b})=g(f(\mathbf{x}))=\mathbf{x}$.

$$
g(c \mathbf{b})=g(c f(\mathbf{x}))=g(f(c \mathbf{x}))=c \mathbf{x}=c g(\mathbf{b})
$$

Therefore, g is linear.

