Worksheet 8	Name:	
MATH 240 (Spring 2024)	Section:	0111(12PM-1PM) / 0121(1PM-2PM)
Feb 22, 2024	TA:	Shin Eui Song

Problem 1 (Practice Exam 1.6). Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be a transformation where $T(x_1, x_2, x_3) =$ (x_1x_3, x_2) . Show T is NOT a linear transformation.

Problem 2 (Practice Exam 1.7). Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be a transformation where $T(x_1, x_2, x_3) = (x_1 + x_2)$ x_3, x_2). Find the standard matrix representation of the transformation.

Problem 3 (Practice Exam 1.8). Suppose you have 5 vectors in \mathbb{R}^7 , and none are the zero vector, and every vector is different. You create a matrix where each column is one of those vectors. Treating this matrix as the standard matrix of a linear transformation, is the transformation sometimes, always, or never one-to-one?

Problem 4 (Practice Exam 1.9). Let

$$A = \begin{bmatrix} -1 & 0 \\ -1 & 1 \\ 6 & -3 \\ 0 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 3 & 0 \\ 0 & 4 & -1 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 1 & 1 \\ 3 & 0 & -1 \\ 0 & 4 & 4 \end{bmatrix}$$

Compute the following, if it exists. If it does not, just write DNE.

- (a) CC^T ,
- (b) $(B+A)^2$,
- (c) AB,
- (d) CB^T ,
- (e) $A^T C$

Problem 5 (Practice Exam 1.10). If the matrix of a linear transformation is given by

$$\begin{bmatrix} 1 & -1 & 4 \\ -2 & 0 & 2 \\ -3 & 4 & -8 \end{bmatrix}$$

Is this transformation one-to-one? Onto? Justify.

Problem 6 (Fall 2015, 1.c) & 1.d)). For each of the following statements, determine TRUE or FALSE. If FALSE, find a counterexample. If TRUE, justify.

- (a) If C, D are square matrices of the same size, then $(C + D)(C D) = C^2 D^2$,
- (b) (T/F) If the $n \times n$ matrices A and B each have n pivot positions, then A can be transformed into B by elementary row operations.

Problem 7 (Variant of Fall 2015, 4.a) & 4.b)). Consider the set V of all vectors of the form $\begin{bmatrix}
a - 2b + 5c \\
2a + 5b - 8c \\
-a - 4b + 7c \\
3a + b + c
\end{bmatrix}$

with a, b, c in \mathbb{R} and $\mathbf{u} = \begin{bmatrix} 6 \\ -6 \\ 6 \\ 4 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} -2 \\ 5 \\ 4 \\ 1 \end{bmatrix}$.

- (a) Justify why the vectors \mathbf{u} and \mathbf{v} are in V.
- (b) Are u and v linearly independent? Justify your answer.

	5	2	0	1	7]		3	0	-2	0
Problem 8 (Fall 2016, 1). Consider the augmented matrices	0	1	-4	4	3	and	1	-1	4	0
	0	0	2	2	-1		5	1	2	0
corresponding to the matrix equations $A\mathbf{x} = \mathbf{b}$ and $C\mathbf{x} = 0$,	resp	pect	ively.		-		-			_

- (a) Write the linear system associated to equation $A\mathbf{x} = \mathbf{b}$ and express the solution \mathbf{x} in parametric vector form. Does this equation have a unique solution?
- (b) Does the equation $C\mathbf{x} = 0$ have nontrivial solution? Explain. What does this say about the columns of *C*?

Problem 9 (Fall 2016, 2a)-c)). Consider the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ given by the formula

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} 2x_1 - 3x_2 + 7x_3\\5x_2 - x_3\\2x_3\end{bmatrix}.$$

- (a) What is the standard matrix for T?
- (b) What is the standard matrix for the transformation $T \circ T$ mapping x to T(T(x))?
- (c) Is T 1-1? Is T onto? Justify.

Problem 1. *T* is not linear because

$$T(2 \cdot (1,0,1)) = (4,0) \neq (2,0) = 2T(1,0,1)$$

Problem 2. We have T(1,0,0) = (1,0), T(0,1,0) = (0,1), and T(0,0,1) = (1,0), so the standard matrix is

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Problem 3. The linear transformation mentioned in the problem is sometimes one-to-one. Recall that a linear transformation is one-to-one if and only if the columns of its standard matrix is linearly independent. Consider

[1	0	0	0	0			[1	0	0	0	0
0	1	0	0	0			0	1	0	0	0
0	0	1	0	0			0	0	1	0	0
0	0	0	1	0	,	B =	0	0	0	1	1
0	0	0	0	1			0	0	0	0	0
0	0	0	0	0			0	0	0	0	0
0	0	0	0	0			0	0	0	0	0
	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$

The columns of A is linearly independent columns, but the columns of B is not linearly independent as the fourth and the fifth column of B are the same.

Problem 4.

(a)

$$CC^{T} = \begin{bmatrix} 0 & 1 & 1 \\ 3 & 0 & -1 \\ 0 & 4 & 4 \end{bmatrix} \begin{bmatrix} 0 & 3 & 0 \\ 1 & 0 & 4 \\ 1 & -1 & 4 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 8 \\ -1 & 10 & -4 \\ 8 & -4 & 32 \end{bmatrix}$$

(b) A and B have differeent size, so cannot add. DNE

(c)

$$AB = \begin{bmatrix} -1 & 0 \\ -1 & 1 \\ 6 & -3 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} -1 & 3 & 0 \\ 0 & 4 & -1 \end{bmatrix} = \begin{bmatrix} 1 & -3 & 0 \\ 1 & 1 & -1 \\ -6 & 6 & 3 \\ 0 & 8 & -2 \end{bmatrix}$$

(d)

$$CB^{T} = \begin{bmatrix} 0 & 1 & 1 \\ 3 & 0 & -1 \\ 0 & 4 & 4 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 3 & 4 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ -3 & 1 \\ 12 & 12 \end{bmatrix}$$

(e) A^T has size 2×4 and C has size 3×3 , so cannot multiply. DNE

Problem 5.

[1	-1	4		[1	-1	4	$P = \frac{1}{P}$	[1	-1	4
-2	0	2	$\xrightarrow{R_2=R_2+2R_1}$	0	-2	10	$\xrightarrow{n_2 - \frac{1}{2}n_2}$	0	1	-5
$\lfloor -3 \rfloor$	4	-8	$R_3 = R_3 + 3R_1$	0	1	4	$R_3 = R_3 + \frac{1}{2}R_2$	0	0	9

Every row has a pivot, so the associated transformation is onto. To check the columns are linearly independent, let $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ be the solution to the homogeneous system. Then we use back-substitution. $9x_3 \Rightarrow x_3 = 0$. $x_2 - 5x_3 = 0 \Rightarrow x_2 = 0$. And, similarly, $x_1 - x_2 + 4x_3 = 0 \Rightarrow x_1 = 0$. Therefore, the trivial solution is the ONLY solution. The associated transformation is one-to-one. In particular, the linear transformation is both one-to-one and onto.

Problem 6.

(a) We have

$$(C+D)(C-D) = C^2 - CD + DC - D^2$$

So we need CD = DC for the equality to hold. This is not always true as

 $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

The statement if FALSE.

(b) Note that the *inverse* of an elementary row operation is again an elementary row operation. If C and D are matrices such that $C \to D$ (i.e. C can be transformed to D by elementary row operations), then $D \to C$. By assumption, both $A \to I_n$ and $B \to I_n$ where I_n the $n \times n$ identity matrix. Therefore $A \to I_n \to B$, so it is TRUE.

Problem 7.

- (a) (a, b, c) = (1, 0, 1) gives u and (a, b, c) = (0, 1, 0) gives us v.
- (b) Suppose $\mathbf{u} = c\mathbf{v}$. Then by the first entries $6 = -2c \Rightarrow c = -3$. This contradicts the fourth entry which says c = 4. Therefore, they are linaerly independent.

Problem 8.

(a) The augmented matrix is already in echelon form, so we write in parametric vector form using back-substitution. Note that we have x_4 is a free variable.

$$\begin{cases} 5x_1 + 2x_2 + x_4 &= 7\\ x_2 - 4x_3 + 4x_4 &= 3\\ 2x_3 + 2x_4 &= 1 \end{cases}$$

Then we first get $x_3 = \frac{1}{2} - x_4$. Then $x_2 = 3 + 4x_3 - 4x_4 = 3 + 2 - 4x_4 - 4x_4 = 5 - 8x_4$. Finally, $5x_1 = 7 - 2x_2 - x_4 = 7 - 10 + 16x_4 - x_4 = -3 + 15x_4$. Therefore

$$\mathbf{x} = \begin{bmatrix} -\frac{3}{5} \\ 5 \\ \frac{1}{2} \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 3 \\ -8 \\ -1 \\ 1 \end{bmatrix}$$

(b) For homogenous system, it is enough to look at the coefficient matrix C

$$\begin{bmatrix} 3 & 0 & -2\\ 1 & -1 & 4\\ 5 & 1 & 2 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} 1 & -1 & 4\\ 3 & 0 & -2\\ 5 & 1 & 2 \end{bmatrix} \xrightarrow{R_2 = R_2 - 3R_1} \begin{bmatrix} 1 & -1 & 4\\ 0 & 3 & -14\\ 0 & 6 & -18 \end{bmatrix}$$
$$\xrightarrow{R_3 = R_3 - 2R_2} \begin{bmatrix} 1 & -1 & 4\\ 0 & 3 & -14\\ 0 & 0 & 10 \end{bmatrix}$$

Using back-substitution (see Problem 5), to see that the only solution to the homogeneous system is the trivial solution. This says that the columns are linearly independent.

Problem 9.

(a)

$$\begin{bmatrix} 2 & -3 & 7 \\ 0 & 5 & -3 \\ 0 & 0 & 2 \end{bmatrix}$$

(b)

2	-3	7	2	-3	7		4	-21	37
0	5	-3	0	5	-3	=	0	25	-21
0	0	2	0	0	2		0	0	4

(c) The columns of the standard matrix is linearly independent (back-substitution) and every row has a pivot position. Therefore, T is both 1-1 and onto.