Problem 1 (Practice Exam 1.6). Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a transformation where $T\left(x_{1}, x_{2}, x_{3}\right)=$ $\left(x_{1} x_{3}, x_{2}\right)$. Show T is NOT a linear transformation.

Problem 2 (Practice Exam 1.7). Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a transformation where $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+\right.$ $\left.x_{3}, x_{2}\right)$. Find the standard matrix representation of the transformation.

Problem 3 (Practice Exam 1.8). Suppose you have 5 vectors in \mathbb{R}^{7}, and none are the zero vector, and every vector is different. You create a matrix where each column is one of those vectors. Treating this matrix as the standard matrix of a linear transformation, is the transformation sometimes, always, or never one-to-one?

Problem 4 (Practice Exam 1.9). Let

$$
A=\left[\begin{array}{rr}
-1 & 0 \\
-1 & 1 \\
6 & -3 \\
0 & 2
\end{array}\right], \quad B=\left[\begin{array}{rrr}
-1 & 3 & 0 \\
0 & 4 & -1
\end{array}\right], \quad C=\left[\begin{array}{rrr}
0 & 1 & 1 \\
3 & 0 & -1 \\
0 & 4 & 4
\end{array}\right]
$$

Compute the following, if it exists. If it does not, just write DNE.
(a) $C C^{T}$,
(b) $(B+A)^{2}$,
(c) $A B$,
(d) $C B^{T}$,
(e) $A^{T} C$

Problem 5 (Practice Exam 1.10). If the matrix of a linear transformation is given by

$$
\left[\begin{array}{rrr}
1 & -1 & 4 \\
-2 & 0 & 2 \\
-3 & 4 & -8
\end{array}\right]
$$

Is this transformation one-to-one? Onto? Justify.
Problem 6 (Fall 2015, 1.c) \& 1.d)). For each of the following statements, determine TRUE or FALSE. If FALSE, find a counterexample. If TRUE, justify.
(a) If C, D are square matrices of the same size, then $(C+D)(C-D)=C^{2}-D^{2}$,
(b) (T/F) If the $n \times n$ matrices A and B each have n pivot positions, then A can be transformed into B by elementary row operations.

Problem 7 (Variant of Fall 2015, 4.a) \& 4.b)). Consider the set V of all vectors of the form $\left[\begin{array}{r}a-2 b+5 c \\ 2 a+5 b-8 c \\ -a-4 b+7 c \\ 3 a+b+c\end{array}\right]$
with a, b, c in \mathbb{R} and $\mathbf{u}=\left[\begin{array}{r}6 \\ -6 \\ 6 \\ 4\end{array}\right], \mathbf{v}=\left[\begin{array}{r}-2 \\ 5 \\ 4 \\ 1\end{array}\right]$.
(a) Justify why the vectors \mathbf{u} and \mathbf{v} are in V.
(b) Are \mathbf{u} and \mathbf{v} linearly independent? Justify your answer.

Problem 8 (Fall 2016, 1). Consider the augmented matrices $\left[\begin{array}{rrrrr}5 & 2 & 0 & 1 & 7 \\ 0 & 1 & -4 & 4 & 3 \\ 0 & 0 & 2 & 2 & -1\end{array}\right]$ and $\left[\begin{array}{rrrr}3 & 0 & -2 & 0 \\ 1 & -1 & 4 & 0 \\ 5 & 1 & 2 & 0\end{array}\right]$ corresponding to the matrix equations $A \mathbf{x}=\mathbf{b}$ and $C \mathbf{x}=0$, respectively.
(a) Write the linear system associated to equation $A \mathbf{x}=\mathbf{b}$ and express the solution \mathbf{x} in parametric vector form. Does this equation have a unique solution?
(b) Does the equation $C \mathbf{x}=0$ have nontrivial solution? Explain. What does this say about the columns of C ?
Problem 9 (Fall 2016, 2a)-c)). Consider the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by the formula $T\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{c}2 x_{1}-3 x_{2}+7 x_{3} \\ 5 x_{2}-x_{3} \\ 2 x_{3}\end{array}\right]$.
(a) What is the standard matrix for T ?
(b) What is the standard matrix for the transformation $T \circ T$ mapping \mathbf{x} to $T(T(\mathbf{x}))$?
(c) Is T 1-1? Is T onto? Justify.

Problem 1. T is not linear because

$$
T(2 \cdot(1,0,1))=(4,0) \neq(2,0)=2 T(1,0,1)
$$

Problem 2. We have $T(1,0,0)=(1,0), T(0,1,0)=(0,1)$, and $T(0,0,1)=(1,0)$, so the standard matrix is

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Problem 3. The linear transformation mentioned in the problem is sometimes one-to-one. Recall that a linear transformation is one-to-one if and only if the columns of its standard matrix is linearly independent. Consider

$$
A=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The columns of A is linearly independent columns, but the columns of B is not linearly independent as the fourth and the fifth column of B are the same.

Problem 4.

(a)

$$
C C^{T}=\left[\begin{array}{rrr}
0 & 1 & 1 \\
3 & 0 & -1 \\
0 & 4 & 4
\end{array}\right]\left[\begin{array}{rrr}
0 & 3 & 0 \\
1 & 0 & 4 \\
1 & -1 & 4
\end{array}\right]=\left[\begin{array}{rrr}
2 & -1 & 8 \\
-1 & 10 & -4 \\
8 & -4 & 32
\end{array}\right]
$$

(b) A and B have differeent size, so cannot add. DNE
(c)

$$
A B=\left[\begin{array}{rr}
-1 & 0 \\
-1 & 1 \\
6 & -3 \\
0 & 2
\end{array}\right]\left[\begin{array}{rrr}
-1 & 3 & 0 \\
0 & 4 & -1
\end{array}\right]=\left[\begin{array}{rrr}
1 & -3 & 0 \\
1 & 1 & -1 \\
-6 & 6 & 3 \\
0 & 8 & -2
\end{array}\right]
$$

(d)

$$
C B^{T}=\left[\begin{array}{rrr}
0 & 1 & 1 \\
3 & 0 & -1 \\
0 & 4 & 4
\end{array}\right]\left[\begin{array}{rr}
-1 & 0 \\
3 & 4 \\
0 & -1
\end{array}\right]=\left[\begin{array}{rr}
3 & 3 \\
-3 & 1 \\
12 & 12
\end{array}\right]
$$

(e) A^{T} has size 2×4 and C has size 3×3, so cannot multiply. DNE

Problem 5.

$$
\left[\begin{array}{rrr}
1 & -1 & 4 \\
-2 & 0 & 2 \\
-3 & 4 & -8
\end{array}\right] \xrightarrow[R_{3}=R_{3}+3 R_{1}]{R_{2}=R_{2}+2 R_{1}}\left[\begin{array}{rrr}
1 & -1 & 4 \\
0 & -2 & 10 \\
0 & 1 & 4
\end{array}\right] \xrightarrow[R_{3}=R_{3}+\frac{1}{2} R_{2}]{R_{2}=-\frac{1}{2} R_{2}}\left[\begin{array}{rrr}
1 & -1 & 4 \\
0 & 1 & -5 \\
0 & 0 & 9
\end{array}\right]
$$

Every row has a pivot, so the associated transformation is onto. To check the columns are linearly independent, let $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ be the solution to the homogeneous system. Then we use back-substitution. $9 x_{3} \Rightarrow x_{3}=0 . x_{2}-5 x_{3}=0 \Rightarrow x_{2}=0$. And, similarly, $x_{1}-x_{2}+4 x_{3}=0 \Rightarrow x_{1}=0$. Therefore, the trivial solution is the ONLY solution. The associated transformation is one-to-one. In particular, the linear transformation is both one-to-one and onto.

Problem 6.

(a) We have

$$
(C+D)(C-D)=C^{2}-C D+D C-D^{2}
$$

So we need $C D=D C$ for the equality to hold. This is not always true as

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]}
\end{aligned}
$$

The statement if FALSE.
(b) Note that the inverse of an elementary row operation is again an elementary row operation. If C and D are matrices such that $C \rightarrow D$ (i.e. C can be transformed to D by elementary row operations), then $D \rightarrow C$. By assumption, both $A \rightarrow I_{n}$ and $B \rightarrow I_{n}$ where I_{n} the $n \times n$ identity matrix. Therefore $A \rightarrow I_{n} \rightarrow B$, so it is TRUE.

Problem 7.

(a) $(a, b, c)=(1,0,1)$ gives \mathbf{u} and $(a, b, c)=(0,1,0)$ gives us \mathbf{v}.
(b) Suppose $\mathbf{u}=c \mathbf{v}$. Then by the first entries $6=-2 c \Rightarrow c=-3$. This contradicts the fourth entry which says $c=4$. Therefore, they are linaerly independent.

Problem 8.

(a) The augmented matrix is already in echelon form, so we write in parametric vector form using back-substitution. Note that we have x_{4} is a free variable.

$$
\begin{cases}5 x_{1}+2 x_{2}+x_{4} & =7 \\ x_{2}-4 x_{3}+4 x_{4} & =3 \\ 2 x_{3}+2 x_{4} & =1\end{cases}
$$

Then we first get $x_{3}=\frac{1}{2}-x_{4}$. Then $x_{2}=3+4 x_{3}-4 x_{4}=3+2-4 x_{4}-4 x_{4}=5-8 x_{4}$. Finally, $5 x_{1}=7-2 x_{2}-x_{4}=7-10+16 x_{4}-x_{4}=-3+15 x_{4}$. Therefore

$$
\mathbf{x}=\left[\begin{array}{r}
-\frac{3}{5} \\
5 \\
\frac{1}{2} \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
3 \\
-8 \\
-1 \\
1
\end{array}\right]
$$

(b) For homogenous system, it is enough to look at the coefficient matrix C

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
3 & 0 & -2 \\
1 & -1 & 4 \\
5 & 1 & 2
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{rrr}
1 & -1 & 4 \\
3 & 0 & -2 \\
5 & 1 & 2
\end{array}\right] \xrightarrow[R_{3}=R_{3}-5 R_{1}]{R_{2}=R_{2}-3 R_{1}} \quad\left[\begin{array}{rrr}
1 & -1 & 4 \\
0 & 3 & -14 \\
0 & 6 & -18
\end{array}\right]} \\
& \xrightarrow{R_{3}=R_{3}-2 R_{2}}\left[\begin{array}{rrr}
1 & -1 & 4 \\
0 & 3 & -14 \\
0 & 0 & 10
\end{array}\right]
\end{aligned}
$$

Using back-substitution (see Problem 5), to see that the only solution to the homogeneous system is the trivial solution. This says that the columns are linearly independent.

Problem 9.

(a)

$$
\left[\begin{array}{rrr}
2 & -3 & 7 \\
0 & 5 & -3 \\
0 & 0 & 2
\end{array}\right]
$$

(b)

$$
\left[\begin{array}{rrr}
2 & -3 & 7 \\
0 & 5 & -3 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{rrr}
2 & -3 & 7 \\
0 & 5 & -3 \\
0 & 0 & 2
\end{array}\right]=\left[\begin{array}{rrr}
4 & -21 & 37 \\
0 & 25 & -21 \\
0 & 0 & 4
\end{array}\right]
$$

(c) The columns of the standard matrix is linearly independent (back-substitution) and every row has a pivot position. Therefore, T is both $1-1$ and onto.

