Problem 1 (Spring 2018, Problem 2c)). Consider the parameters a and b and the system

$$
\left\{\begin{array}{rlr}
-2 x_{1}+a x_{2} & = & 1 \\
6 x_{1}+b x_{2} & = & -2
\end{array}\right.
$$

(a) i) Write its augmented matrix. ii) Write the system as a vector equation. iii) Write the system as a matrix equation.
(b) Is this system homogeneous?
(c) Find some values of the parametrs a and b for which the system is inconsistent.

Problem 2 (Practice Exam 1.1). Solve the following systems by row reducing the augmented matrix. If there is a unique solution, state what it is. If there is no solution, explain why. If there are infinite solutions, express your solution in parametric vector form.
(a)

$$
\begin{aligned}
x+y+z & =3 \\
y+2 z & =-5 \\
x+2 y+4 z & =-4
\end{aligned}
$$

(b)

$$
\begin{aligned}
x_{1}-3 x_{2}+2 x_{3}-5 x_{4}= & 3 \\
2 x_{1}-6 x_{2}+x_{3}-7 x_{4}= & 2 \\
x_{1}-3 x_{2}-4 x_{3}+x_{4}= & -5
\end{aligned}
$$

Problem 3 (Practice Exam 1.2 and more). For the following UNRELATED statements, determine if the statement is true or false. If it is TRUE, simply state TRUE. If it is FALSE, provide an explicit counterexample i.e. an explicit example that shows the statement is false.
(a) Suppose A is a 3×4 matrix that is the standard matrix of a linear transformation. Then the transformation is always onto.
(b) Suppose A is a 3×4 matrix that is the standard matrix of a linear transformation. Then the transformation is never one-to-one.
(c) Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ be vectors in \mathbb{R}^{n}. If $n \geq 3$, then the set of vectors must be linearly independent.
(d) Let A be $m \times n$ matrix. If $m>n$, then the set of ROW vectors (each row represents 1 vector) must be linearly dependent.
(e) If A is the matrix representation of a linear transformation and we know the columns of A form a linearly independent set, then the transformation is always onto.
(f) If the coefficient matrix A has a pivot position in every column, then equation $A \mathbf{x}=\mathbf{b}$ is consistent.
Problem 4 (Practice Exam 1.3). Determine if $(0,10,8)$ lies in

$$
\operatorname{Span}(\{(-1,2,3),(1,3,1),(1,8,5)\}) .
$$

If it does lie in the span, find an explicit linear combination.
Is the set $\operatorname{Span}(\{(-1,2,3),(1,3,1),(1,8,5)\})$ linearly independent?
What about the set $\{(-1,2,3),(1,3,1),(1,8,5)\}$?
Problem 5 (Practice Exam 1.4). Suppose \mathbf{v} is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$. If we add another vector \mathbf{v}_{m+1}, will \mathbf{v} sometimes, always, or never be in $\operatorname{Span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}, \mathbf{v}_{m+1}\right\}\right)$?
Problem 6. Consider the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ such that $T(1,2)=(5,4,3)$ and $T(4,3)=$ $(1,1,2)$. Find $T(2,-1)$.

Problem 1.

(a) i)

$$
\left[\begin{array}{rrr}
-2 & a & 1 \\
6 & b & -2
\end{array}\right]
$$

ii)

$$
x_{1}\left[\begin{array}{r}
-2 \\
6
\end{array}\right]+x_{2}\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{r}
1 \\
-2
\end{array}\right]
$$

iii)

$$
\left[\begin{array}{rr}
-2 & a \\
6 & b
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{r}
1 \\
-2
\end{array}\right]
$$

(b) The system is not homogeneous because the right-hand side is not zeroes.
(c)

$$
\left[\begin{array}{rrr}
-2 & a & 1 \\
6 & b & -2
\end{array}\right] \xrightarrow{R_{2}=R_{2}+3 R 1}\left[\begin{array}{rrr}
-2 & a & 1 \\
0 & b+3 a & 1
\end{array}\right]
$$

Then it would be inconsistent when $b+3 a=0$. Hence $a=-1$ and $b=3$ works.

Problem 2.

(a)

$$
\left[\begin{array}{rrrr}
1 & 1 & 1 & 3 \\
0 & 1 & 2 & -5 \\
1 & 2 & 4 & -4
\end{array}\right] \xrightarrow{R_{3}=R_{3}-R_{1}}\left[\begin{array}{rrrr}
1 & 1 & 1 & 3 \\
0 & 1 & 2 & -5 \\
0 & 1 & 3 & -7
\end{array}\right] \xrightarrow{R_{3}=R_{3}-R_{2}}\left[\begin{array}{rrrr}
1 & 1 & 1 & 3 \\
0 & 1 & 2 & -5 \\
0 & 0 & 1 & -2
\end{array}\right]
$$

Then

$$
\left\{\begin{array}{l}
x_{3}=-2 \\
x_{2}=-5-2 x_{3}=-1 \\
x_{1}=3-x_{2}-x_{3}=6
\end{array}\right.
$$

(b)

$$
\begin{array}{cc}
{\left[\begin{array}{rrrrr}
1 & -3 & 2 & -5 & 3 \\
2 & -6 & 1 & -7 & 2 \\
1 & -3 & -4 & 1 & -5
\end{array}\right]}
\end{array} \begin{gathered}
\xrightarrow[R_{3}=R_{3}-2 R_{2}]{R_{2}=R_{2}-2 R_{1}}
\end{gathered} \begin{array}{rrrrr}
R_{3}=R_{3}-R_{1}
\end{array}\left[\begin{array}{rrrrr}
1 & -3 & 2 & -5 & 3 \\
0 & 0 & -3 & 3 & -4 \\
0 & 0 & -6 & 6 & -8
\end{array}\right]
$$

Then

$$
\mathbf{x}=\left[\begin{array}{r}
3+3 x_{2}-2 x_{3}+5 x_{4} \\
x_{2} \\
\frac{4}{3}+x_{4} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
\frac{1}{3}+3 x_{2}+3 x_{4} \\
x_{2} \\
\frac{4}{3}+x_{4} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{3} \\
0 \\
\frac{4}{3} \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
3 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
3 \\
0 \\
1 \\
1
\end{array}\right]
$$

Problem 3.

(a) FALSE, consider the matrix

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The span of the column vectors is clearly $\{0\}$ which is not \mathbb{R}^{3}. The associated linear transformation is not onto.
(b) TRUE, there are four vectors with three entries. Therefore, the set of column vectors must be linearly dependent.
(c) FALSE, for $n=3$, the set

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right\}
$$

is linearly dependent.
(d) TRUE, for ROW vectors, m is the number of vectors and n is the number of entries. Since $m>n$, the set of row vectors is linearly dependent.
(e) FALSE, consider

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

Then $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ is not in the span of column vectors, so the associated transformation is not onto.
(f) FALSE, consider the coefficient matrix

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

This matrix has as pivot position in every column, but the quation $A \mathbf{x}=\left[\begin{array}{lll}5 & 3 & 1\end{array}\right]$ does not have a solution.
Problem 4. We may solve linear system associated to the augmented matrix

$$
\left[\begin{array}{rrrr}
-1 & 1 & 1 & 0 \\
2 & 3 & 8 & 10 \\
3 & 1 & 5 & 8
\end{array}\right] \xrightarrow[R_{3}=R_{3}+3 R 1]{R_{2}=R_{2}+2 R_{1}}\left[\begin{array}{rrrr}
-1 & 1 & 1 & 0 \\
0 & 5 & 10 & 10 \\
0 & 4 & 8 & 8
\end{array}\right] \xrightarrow{\substack{R_{3}=\frac{1}{4} R_{3}}} \begin{aligned}
& {\left[\begin{array}{rrrr}
-1 & 1 & 1 & 0 \\
0 & 1 & 2 & 2 \\
0 & 1 & 2 & 2
\end{array}\right]}
\end{aligned} \begin{aligned}
& \xrightarrow{R_{2}=\frac{1}{5} R_{2}}\left[\begin{array}{rrrr}
-1 & 1 & 1 & 0 \\
0 & 1 & 2 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

There are infinitely many solutions with free variable x_{3}. Let $x_{3}=0$, then $x_{2}=2$ and $x_{1}=2$. In other words,

$$
\left[\begin{array}{r}
0 \\
10 \\
8
\end{array}\right]=2\left[\begin{array}{r}
-1 \\
2 \\
3
\end{array}\right]+2\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]+0\left[\begin{array}{l}
1 \\
8 \\
5
\end{array}\right]
$$

The both sets $\operatorname{Span}(\{(-1,2,3),(1,3,1),(1,8,5)\})$ and $\{(-1,2,3),(1,3,1),(1,8,5)\}$ are linearly dependent. To see this, consider the augmented matrix for the homogeneous system. Repeating the same row reduction,

$$
\left[\begin{array}{rrrr}
-1 & 1 & 1 & 0 \\
2 & 3 & 8 & 0 \\
3 & 1 & 5 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
-1 & 1 & 1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

If $x_{3}=1$, then $x_{2}=-2$. So $x_{1}=-1$. Therefore,

$$
\left[\begin{array}{l}
1 \\
8 \\
5
\end{array}\right]=\left[\begin{array}{r}
-1 \\
2 \\
3
\end{array}\right]+2\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]
$$

This shows that both sets are linearly dependent as

$$
\{(-1,2,3),(1,3,1),(1,8,5)\} \subset \operatorname{Span}(\{(-1,2,3),(1,3,1),(1,8,5)\})
$$

Problem 5. \mathbf{v} is ALWAYS in $\operatorname{Span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}, \mathbf{v}_{m+1}\right\}\right)$. By assumption,

$$
\begin{aligned}
\mathbf{v} & =a_{1} \mathbf{v}_{1}+\cdots+a_{m} \mathbf{v}_{m} \\
& =a_{1} \mathbf{v}_{1}+\cdots+a_{m} \mathbf{v}_{m}+0 \mathbf{v}_{m+1} \in \operatorname{Span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}, \mathbf{v}_{m+1}\right\}\right)
\end{aligned}
$$

Problem 6. First, we need to write $(2,-1)$ as a linear combination of $(1,2)$ and $(4,3)$. To do this, one can solve the augmented matrix

$$
\left[\begin{array}{rrr}
1 & 4 & 2 \\
2 & 3 & -1
\end{array}\right]
$$

Or simply observe that

$$
(4,3)-2(1,2)=(2,-1)
$$

Then

$$
T(2,-1)=T((4,3)-2(1,2))=T(4,3)-2 T(1,2)=(1,1,2)-2(5,4,3)=(-9,-7,-4)
$$

