
Minicourse on:

Markov Chain Monte Carlo:

Simulation Techniques in Statistics

Eric Slud, Statistics Program

Lecture 1: Metropolis-Hastings Algorithm, plus back-

ground in Simulation and Markov Chains.

Lecture 2: The ‘Gibbs Sampler’, via motivation from

Metropolis-Hastings.

In both lectures, there will be computational illustra-

tions: in Lecture 1 and beginning of Lecture 2, an ex-

tended example involving simulation of uniform random

points in convex regions defined by linear constraints. In

Lecture 2, further examples of statistical interest.
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1 Introduction to the Idea of Simulation

(A) Building-block for Simulation is existence of algo-

rithmically generated pseudo-random numbersU1, U2, . . .,

behaving as though independent identically distributed

(iid) Uniform(0, 1).

(B) Objective is usually to evaluate an integral∫
g(x)f (x)dµ(x) = E(g(X))

where X is a random variable or vector with values in

possibly high-dimensional Rd, where X has density f

(known at least implicitly) with respect to σ-finite mea-

sure µ (usually Lebesgue or a counting measure).

(C) If we were able to find an explicit, easily codable

function h(U1, U2, . . .) of Uniform(0, 1) variates with

values in Rd and probability distribution the same as X ,

then we would evaluate the desired integral as

N−1
N∑
j=1

g(h(Uj1, Uj2, . . .))

for large N by the Law of Large Numbers, where Ujk is

a doubly indexed array of iid Uniform variables.

It is allowed for h to depend on unboundedly many

U variables, as long as the number of such variables

required is a r.v. with finite expectation.
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(D) We are interested in examples of X with proba-

bility distributions, exhibiting either hierarchically struc-

tured dependence for statistical applications or depen-

dence defined by geometric constraints. We restrict at-

tention to the latter in this first lecture: the objective is

to simulate uniformly distributed random points X in a

region D ⊂ Rd.

Accept-Reject Algorithms

Suppose that it is easy to simulate X uniformly dis-

tributed in a regionB ⊃ D, with k fixed and h(U1, . . . , Uk)

uniformly distributed in B. Then the rule

X ≡ h(Un1, . . . , Unk) for

n = inf {i ≥ 1 : h(Ui1, . . . , Uik) ∈ D}
based on doubly indexed iid array {Uij}, is uniformly

distributed in D. Here n is random, with distribution

Geometric(p), p = vol(D)/vol(B)).

Example. B = {(x1, . . . , xd) : xi ≥ 0,
∑d
i=1 xi ≤ 1},

and for fixed a ∈ (R+)d, b > 0,

D = {x ∈ B : x · a ≤ b}

This is a simplified example: more generally, the region

D is defined by linear constraints within Rd, d large.
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2 Metropolis-Hastings Algorithm

Suppose that you want to generate a random vector X ∈
Rd with density π (for definiteness, with respect to Lebesgue

measure.) The Metropolis-Hastings algorithm generates

as a function of pseudo-random variates U1, U2, . . . ,, a

discrete-time random sequence X0, X1, . . . , Xt, . . . ∈
Rd which has a unique stationary, or long-term equilib-

rium distribution such that the probability law of Xt

converges for large t to the probability measure with den-

sity π. For large t, Xt is a random vector with approx-

imate density π, and even better, for large M,N,

E(g(X)) ≈ N−1
M+N∑
t=M+1

g(Xt)

The algorithm has three ingredients:

(1) A Proposal Markov Chain expressed by a transi-

tion kernel q(x, y) (regarded as conditional density

of landing in one transition-step at y starting from

x, from which it must be easy to simulate random

vectors of density q(x, ·) for each choice of x.

(2) The Accept-Reject Rule which says that if Xk

has been generated previously, and Yk ∼ q(Xk, ·)
is simulated using new (and therefore independent)
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pseudo-random variates {Ui} including Uk+1, then

Xk+1 = Yk if Uk+1 ≤
π(Yk) q(Yk, Xk)

π(Xk) q(Xk, Yk)

and = Xk otherwise.

(3) A decision rule for stopping: typically M (initial

point for ergodic averaging) is taken much larger than

N (the number of iterates in the average).

Example (continued): Suppose q corresponds to

the ‘independence chain’, q(x, y) ≡ (1/vol(B)) I[y∈B]

with B ⊂ Rd the unit simplex. The simulation of Yt
values is Uniform in B, which is easy to do: starting with

U1, . . . , Ud iid Uniform(0, 1), define the coordinates of

each Y ∈ Rd by taking successive differences among

0 and the sorted-increasing values U(1) < · · · < U(d).

This is a small exercise in Jacobian change of variable:

the joint density of U(1), . . . , U(d) is d ! on the set of

sorted-increasing d-tuples in (0, 1)d, and the density of

the resulting Y vectors on B is also d !

Leting X0 be an arbitrary element of B, and recall

D ⊂ B: the Metropolis-Hastings algorithm successively

defines, for t ≥ 0:

Xt+1 =

 Xt if Xt ∈ D, Yt 6∈ D
Yt if Yt ∈ D
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Thus, in the example, since q has always the same

constant value whenever it is nonzero, and the same is

true for the desired density π(x) = I[x∈D]/vol(D), Metropolis-

Hastings is precisely the Accept-Reject algorithm !

Computations in Example

Let us fix a vector a at random, in the case d=10.

0.513 0.944 0.960 0.116 0.032 0.944

0.691 0.489 0.020 0.710

We try two examples of choices for b, recalling that the

set D of interest is

D = {x ∈ B : x · a ≤ b}

First, with b = a · 1/10 = .542: note that a random

element X of B has expectation 1
11 1, so it is not too

surprising that the fraction vol(D)/vol(B) > 0.5. In

fact, this ratio is around 0.66, since of 10000 randomly

generated uniformly distributed elements Yt ∈ B, 6641

were found to satisfy the criterion a · Yt ≤ b. This high

proportion means that Accept-Reject would likely be the

best way to generate random points in D. (Generating

and testing the 10000 points took 5 seconds on my home

PC.)
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Next, fix b = a · 1/20 = .271. Now, of 10000

randomly generated points in B, only 207 points fell

in D = {x ∈ B : a · x ≤ b}. This fraction

vol(D)/vol(B) ≈ .02 is small enough that perhaps

Accept-Reject can be improved. The situation only be-

comes worse if D is defined by more linear constraints in

higher-dimensional simplices !

It is obvious that the coordinate values in D tend to

be smaller than those in B. One way to visualize this

is to make pictures (histograms, or smoothed versions

called ”density estimates”) of random variable values like

x1 + · · · + x6, as plotted in Fig. 1.
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Figure 1: Pair of density estimates (smoothed histograms) for the partial
sum X1 + · · · + X6 of the first 6 coordinate entries of each random vector
from a block of 1000 random 10-vectors X generated (a) in the unit simplex
(sold line), and (b) in the unit simplex further restricted by a single linear
constraint X · a ≤ 1 · a/2 (dashed line).

8



Example, continued. Now consider a Metropolis-Hastings

algorithm with a non-independent Proposal Chain de-

fined by kernel q(x, y). The goal is to devise an easy-

to-implement transition mechanism which with positive

probability (in a bounded number of steps) carries any

point in B to the neighborhood of any point in D.

Here is a construction, depending on two positive pa-

rameters α, β. Starting from x, define

γ(x) = (1 + β) min(x · 1, x · a/b)

Then define y through its coordinates:

yi = exp(Zi) (xi/γ(x))

where the r.v.’s Zi, 1 ≤ i ≤ d, are iid N (0, α).

The Metropolis-Hastings algorithm starts with arbi-

trary X0 ∈ B. At k’th stage, with Xk given, calculate

γ(x) as above, and define Yk as above, with a new and

independent batch of Zi r.v.’s. Then Xk+1 is Yk if

Xk 6∈ D, Yk ∈ D, and is Xk if Yk 6∈ D. But if both

Xk, Yk ∈ D, then Xk+1 = Yk with probability

min(1, exp (
1

α
(log(γ(Xk))− log(γ(Yk)))·

(
d∑
i=1

log(Yk,i/Xk,i)−
d

2
(log(γ(Xk)) + log(γ(Yk))))
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3 Discrete-time Markov Chains

Discrete or Continuous States

Under tractable conditions of irreducibility and ergodic-

ity, the Markov chain defined by the Metropolis-Hastings

algorithm has a unique stationary distribution to which

it converges, perhaps rapidly, as time t gets large.

Each of these notions is well-known in Markov chains

with discrete time-parameter. We recall definitions from

the discrete case and give parallel definitions and results

for continuous-state cases. Basic references: Karlin &

Taylor (1975) for discrete state and Robert & Casella

(1999) for continuous.

Generally, a sequence of r.v.’s Xt, t = 0, 1, 2, . . .

taking values in the same state-space Rd is a Markov

Chain if for all Borel sets A ⊂ Rd, t ∈ Z+,

P (Xt ∈ A |Xs, s < t) = P (Xt ∈ A |Xt−1)

and such one-step transition probabilities are specified

by a Markov kernel q(x, y), as
∫
A q(x, y)dµ(y). If

all Xt takes values in the same countable set S, then

with µ counting measure on S, the kernel q is called

a (possibly ∞×∞) stochastic matrix .
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In discrete states, say the chain defined by q is irre-

ducible if ∀x, y ∈ S, ∃ {zi}mi=1 ⊂ S :

x = z1, zm = y : q(zi, zi+1) > 0, 1 ≤ i < m

With continuous states and a measure with density f ,

say the chain is f-irreducible if for all A with positive

f measure, and all x, ∃ m : P (Xm ∈ A |X0 = x) > 0.

There is a Theorem (Robert & Casella Thm 6.2.5) say-

ing that if the Metropolis-Hastings chain is π-irreducible

and has nonzero probabilities of ‘rejecting’ (ie of Xt+1 =

Xt) then for every initial distribution forX0, the distribu-

tion of Xt converges in Total Variation to the distribution

with density π. In some problems one can say more (geo-

metric ergodicity): that the convergence is exponentially

fast in t.
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4 Reversibility & Convergence

A key property of the Metropolis-Hastings chain is re-

versibility. This chain has transition kernel M(x, y)

(weighted combination of q(x, y) and point-mass δx(y) )

which satisfies the detailed balance relation

M(y, x)π(y) = M(x, y)π(x)

(says the chain can be run backwards in time by the

same probabilistic transition mechanism. Integrating this

relation over y (using M(x,Rd) = 1) yields∫
π(y)M(y, x)dy = π(x)

and says that π is invariant or stationary. Condi-

tions on mutual accessibility, like pi-irreducibility, lead to

uniqueness for the invariant distribution.
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Remarks about Metropolis-Hastings algorithms.

(0) The Metropolis-Hastings steps can be implemented

even if π contains an unknown normalizing constant (be-

cause the constant cancels out of the accept-probability

ratios).

(1) If q were symmetric (the original suggestion), tran-

sition steps move to higher π density regions automtically,

to lower density regions only with some probability.

(2) Billera & Diaconis (2001) characterize this algo-

rithm (in the case of finite-support X) within a class of

Markov chains with stationary density π as the closest to

the Markov chain with kernel q.

(3) The choice of q makes a huge difference to the

successful convergence of the algorithm.

(4) The choice of stopping-criterion is still not well

understood: Jones and Hobert (2001) following Meyn &

Tweedie (1993) and others show how to find computable

theoretical bounds for rates of geometric ergodicity, but

these may not accurately reflect algorithms’ success in

practice.
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Further comments on the Metropolis chain

behavior in the example.

The pictures displayed on the following pages show

that the proposal chain transitions are too active, pre-

venting the blocks of 1000 successive generated values

Xt from settling down rapdidly as we would want them

to.
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Figure 2: Density estimates (smoothed histograms) for the partial sum
X1 + · · · + X6 of the first 6 coordinate entries of each random vector from
ech of six successive blocks of 1000 random 10-vectors X generated by the
Metropolis-Hastings algorithm described on previous slides (with proposal
chain multiplying individual coordinates of the 10-vectors by independent
lognormal variables.) Parameters α, β in the proposal kernel q were
α = .04, β = .05. The chain was “pre-iterated” or ‘burned-in’ for 1500 tran-
sition steps before creating and plotting density estimates from successive
blocks of 1000 iterates.
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Figure 3: Density estimates (smoothed histograms) for the partial sum
X1 + · · · + X6 of the first 6 coordinate entries of each random vector from
each of five successive blocks of 1000 random 10-vectors X generated by the
Metropolis-Hastings algorithm described on previous slides. The proposal
chain, including parameters, were exactly the same as in Figure 2, and the
blocks of iterates from which density estimates are plotted in this Figure are a
continuation, after a gap of 1000 ‘wasted’ iterates, of the Metropolis-Hastings
realization plotted in Figure 2.
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Figure 4: Density estimates (smoothed histograms) for the partial sum
X1 + · · · + X6 of the first 6 coordinate entries of each random vector from
each of siz successive blocks of 1000 random 10-vectors X generated by the
Metropolis-Hastings algorithm described on previous slides (with proposal
chain multiplying individual coordinates of the 10-vectors by independent
lognormal variables.) Parameters α, β in the proposal kernel q were
α = .1, β = e.05 − 1. The chain was “pre-iterated” or ‘burned-in’ for 6000
transition steps before creating and plotting density estimates from succes-
sive blocks of 1000 iterates.
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Figure 5: Density estimates (smoothed histograms) for the partial sum
X1 + · · · + X6 of the first 6 coordinate entries of each random vector from
each of siz successive blocks of 1000 random 10-vectors X generated by the
Metropolis-Hastings algorithm described on previous slides (with proposal
chain multiplying individual coordinates of the 10-vectors by independent
lognormal variables.) Parameters α, β in the proposal kernel q were
α = .02, β = e.01 − 1. The chain was “pre-iterated” or ‘burned-in’ for
10000 transition steps before creating and plotting density estimates from
successive blocks of 1000 iterates.
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Another Proposal Chain

An approach which turns out to work better in the ex-

tended Example is to implement Metropolis-Hastings by

changing only one coordinate at a time. This violates the

stationary-Markov transition kernel unless we combine d

successive steps for each of the coordinates in turn, but

the proposal transitions qi applying to the i’th coordi-

nate are easier to describe individually.

For qi, starting from X ∈ D, we simply replace

Xi by the conditional law for the i’th coordinate given

the other coordinates, for a random point of D. In the

example, we have

0 ≤ xi ≤ min(1− ∑
j:j 6=i

xj, (b− ∑
j:j 6=i

ajxj)/aj)

Replacing xi by a uniformly distributed value between

0 and the displayed upper bound, gives a value yi such

that

(x1, . . . , xi−1, yi, xi+1, . . . , xd) ∈ D
a point which would be accepted by a M-H step with

probability 1. An iteration based on this step, with i

successively ranging (in random order) over {1, . . . , d},
is our first example of a Gibbs Sampler MCMC scheme,

and we will see how it works at the beginning of the next

Lecture.
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