
Minicourse on:

Markov Chain Monte Carlo:

Simulation Techniques in Statistics

Eric Slud, Statistics Program

Lecture 2: The ‘Gibbs Sampler’, via motivation from

Metropolis-Hastings. Statistical applications in hierarchical-

model inference, with computational examples.

Outline

(I) Begin with re-cap of Gibbs-Sampler motivation from

1st Lecture and ideas of checking for convergence in Ex-

ample of generating uniform random 10-vector within

unit simplex further restricted by another linear con-

straint. Compare behavior of Gibbs-sampler version.

(II) General definition of Gibbs-Sampler. Relation to

Metropolis-Hastings. First examples.

(III) Relation of Gibbs-Sampler to Bayesian statistical

analysis. Example of random-intercept logistic regression

inference.
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Geometric-Prob. Example. Define unit simplex

B = {(x1, . . . , xd) : xi ≥ 0,
d∑
i=1

xi ≤ 1}

and for fixed a ∈ (R+)d, b > 0, objective was to

simulate uniform random point in

D = {x ∈ B : x · a ≤ b}

Fixed d = 10, and (random, but fixed) choice a =

0.513 0.944 0.960 0.116 0.032 0.944

0.691 0.489 0.020 0.710

and b = a · 1/20 = .271.

Metropolis-Hastings Algorithm

We defined Proposal Markov Chain which, starting

from point x ∈ Rd had transition step with con-

ditional density q(x, ·) consisting of multiplication of

the coordinates xi by independent r.v.’s eZi with

Zi ∼ N (µ(x, α). M-H Algorithm using this chain takes

the form: if X1, . . . , Xk have already been generated,

Yk ∼ q(Xk, ·) and Uk+1 ∼ Unif[0, 1] are simulated and

then:

Xk+1 = Yk if Uk+1 ≤
π(Yk) q(Yk, Xk)

π(Xk) q(Xk, Yk)

and = Xk otherwise.
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Another Proposal Chain
Transition affecting only i’th coordinate of x ∈ D is

to replace xi by conditional distribution for i’th coor-

dinate of random D point given coord’s x1, . . . , xi−1,

xi+1, . . . , xd, or

Uniform(0, min(1− ∑
j:j 6=i

xj, (b− ∑
j:j 6=i

ajxj)/aj))

New ‘proposal-chain’ step is to do these replacements for

all i ∈ {1, . . . , 10}. (In practice, we do them in random

order!) This is the Gibbs Sampler for the present

example.

Plotted picture shows that the blocks of successive

smoothed-histograms for quantities x1 + · · · + x6 by

this method behave very stably!

Here is another indicator of convergence: tallied num-

bers of x1 + · · ·+x6 values in blocks of 1000 which fall in

bins defined by breakpoints (0,.2,.3,.4,.45,.5,.55,.6,.7,.8,1);

then tallied same for another block of 1000 occurring

10000 iterates later.

Interval 1 2 3 4 5 6 7 8 9 10

Count1 35 132 208 105 94 96 99 124 76 31

Count2 34 104 189 112 103 113 101 121 90 33

Two-sample χ2
9 value is 7.566, which is OK!
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Simple Gibbs-Sampler Example

Consider the problem of sampling bivariate r.v.’s from

the joint density on the positive quadrant:

f (x, y) = c exp(−x− y − 4xy)

Exact joint dist. fcn is messy, but conditionals are not:

fX|Y (x|y) = (1 + 4y) e−x(1+4y) ∼ Expon(1 + 4y)

(by symmetry, conditional for Y given X has same form).

Simulating exponentials is easy:

U ∼ Unif(0, 1) ⇒ − logU

λ
∼ Expon(λ)

So begin with (X0, Y0) arbitrary (say independent

Expon(1) coord’s). Next

Xt+1 ∼ Expon(1 + 4Yt) , Yt+1 ∼ Expon(1 + 4Xt+1)

Generated 10,000 successive pairs (Xt, Yt) this way:
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Figure 7: Plot of true density (hollow points) and 5 smoothed-histogram
(density-estimate) pictures based on 5 successive blocks of 1000 x-values in
bivariate exponential Gibbs-sampler example. Five thousand pre-iterates
(M = 5000) preceded the first block.
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General Gibbs-Sampler Step

So what characterizes the Gibbs Sampler as an MCMC

technique is (primarily) that sampling transition-steps

are done from the full conditionals and (usually) that

the M-H acceptance probabilities are always 1.

Full conditionals means simulation of a random vec-

tor X = (X1, . . . , XK) in a setting where all

fXi|(Xj , j 6=i)(xi |x
(i))) , i = 1, . . . , K

are simple to simulate from.

A single complete transition-step consists of a complete

pass X 7→ X′ through all components, say

X ′i ∼ fXi|(Xj , j 6=i)(· | (X
′
j, j < i; Xj, j > i)) , i = 1, . . . , K

If the actual conditional densities for the desired joint

density are used, and the order of stepping through

coordinates is randomized , then this is a Metropolis-

Hastings step with all acceptance-probabilities = 1. This

was the case in the previous examples with random point

from simplex, and with bivariate exponential (K = 2).

Resulting chain is fX irreducible under the

Positivity condition saying:

fXi
(xi) > 0 for i = 1, . . . , K =⇒ fX(x) > 0
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General Gibbs-Sampler, continued

Note: the positivity condition is satisfied in both of

the previous examples.

Hammersley-Clifford Thm, 1970. Under the

positivity condition, fX is uniquely determined by the

full conditionals, satisfying ∀ x′

fX(x) ∝
K∏
i=1

fXi|Xj , j 6=i(xi |xj, j < i;x′j, j > i)

fXi|Xj , j 6=i(x
′
i |xj, j < i;x′j, j > i)

Proposition. Under the positivity condition, if the

Gibbs-Sampler Markov Chain is aperiodic, then for a

probability-1 set of initial values X0, as t → ∞, the

probability law of Xt converges in total variation to the

unique limiting distribution with density fX.
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Bayesian vs. Frequentist Applications

Most statistical applications of MCMC involve likelihood-

based estimation of parameters from data. Paradoxi-

cally, the Gibbs Sampler is applied to simulate not data

(Z1, . . . , Zn) but parameters ϑ ∈ Rp !

Suppose for fixed but unknown parameter value ϑ =

θ0 the data are iid Zi ∼ f (z|ϑ). The observed data

(Zi, 1 ≤ ı ≤ n) are regarded as fixed, and statements

about parameters ϑ compatible with the data are gen-

erally based on the Likelihood

L(ϑ, Z) =
n∏
i=1

f (Zi |ϑ)

as function of ϑ.

Frequentist statisticians often calculate:

(1) (MLE:) maximize L(·, Z) at ϑ̂, or

(2) (Test-based CI:) {ϑ : L(ϑ̂, Z)
L(ϑ, Z) ≤ exp(1

2 χ
2
p,α)}.

Bayesian statisticians treat ϑ as random, distributed

with prior density π, and calculate:

(3) (Posterior density:) fϑ|Z(ϑ |Z) = π(ϑ)L(ϑ, Z)∫
L(a, Z) π(a) da

8



Note: if we can fix prior π to be uniform over some

large fixed region in Rp containing θ0, then (1)-(2)

can be viewed as resp. the mode (maximizer) and level-

exceedance region for the posterior density (1).

So we simulate the parameter ϑ as a random variable

with the posterior density, and derive quantities (1)-(3)

empirically.

Hierarchical Models

Certain Bayesian-motivated models allow factorizations

that make Gibbs Sampling particularly handy:

Hierarchy is:

X ∼ f (x, ϑ) , ϑ ∼ g(θ, η) , η ∼ h(η, b0), etc.

Additional structure used in simplifying conditionals:

Exponential families : f (x, ϑ) = k(x) exp(T (x) · ϑ −
ψ(ϑ))

Conjugate priors : if η = (µ, λ) and prior density for

ϑ parameter is

π(θ) = g(θ, η) = K(η) = exp(θ · µ− λψ(θ))

then posterior fϑ|x(θ|x) = g(θ, (µ + T (x), λ + 1)).
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Example – Nuclear Pump Failures

Consider the following data (example pp. 301-2 in Robert

& Casella 1999, from earlier paper by other authors)

1 2 3 4 5 6 7 8 9 10

F 5 1 5 14 3 19 1 1 4 22

T 94.3 15.7 62.9 125.8 5.2 31.4 1.1 1.0 2.1 10.5

The model is that the numbers ni of failures (F) for

pump i in time T=ti are Poisson(λiti) r.v.’s, with

λi ∼ Gamma(1.8, β) , β ∼ Gamma(.01, 1)

Recall that

fGamma(a,b)(y) =
baya−1

Γ(a)
e−by , pPoiss(µ)(k) =

µk

k!
e−µk

Then the posterior density (regarded as a joint density

for the unknown parameters β and λ1, . . . , λ10) is

∝
10∏
i=1

{
(λiti)

ni e−λiti β1.8 λ.8i e
−βλi

}
β−.99e−β

so the conditionals are:

λi ∼ Gamma(ni + 1.8, ti + β) given β, λj : j 6= i

β ∼ Gamma(18.01, 1 +
10∑
i=1

λi) given λ
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Example, continued. Simulated successively from

these conditionals, starting from β0, λ0 from prior. Gen-

erated 10,000 Gibbs-Sampler iterations (βt, λt).

Note that we are really interested primarily in β,

although λi would be useful in forecasting future failures,

since they are the pumpwise rates. (Even frequentists

would include the λi if only to simplify the likelihood

which is otherwise a mess involving Gamma functions !)
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Figure 8: Smoothed density estimate for 5000 Gibbs-Sampled beta values,
after 5000 burn-in iterations (solid curve). Dashed curve is density estimate
for 5000 beta values after 5000 more intermediate iterations. Maximized
posterior density (or likelihood) gave MLE for beta of 2.23, and test-based
confidence interval for beta approximately (1.2, 3.9).
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Remark about MCMC algorithms.

The choice of stopping-criterion is still not well un-

derstood: Jones and Hobert (2001) following Meyn &

Tweedie (1993) and others show how to find computable

theoretical bounds for rates of geometric ergodicity, but

these may not accurately reflect algorithms’ success in

practice. There is room for a lot of computational expe-

rience and theoretical research here !
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Random-Intercept Logistic Regression
An interesting class of statistical applications can be

handled by either Metropolis-Hastings, MCMC, or missing-

data (EM) techniques. These are statistical models with

random effects. A good example is random-intercept

logistic regression: suppose for experimental units i =

1, . . . , m, we observe data on ni potential occurrences

and see Ri occurrences, with explanatory or predictor

vector variables Wi assumed to affect the outcomes

according to a model

Ri ∼ Binom(ni, πi) , log
πi

1− πi
= a + b ·Wi + ui

where ui ∼ N (0, σ2) are unobservable and independent

random effects related to unmodelled random differences

between the experimental units, and ϑ = (a,b, σ2)

are unknown statistical parameters which must be esti-

mated (say by Maximum Likelihood). Because of the

unobserved (integrated-out) variables ui, the likelihood

is complicated. An extended comparative discussion of

how to calculate and maximize this likelihood is given on

the Lecture 2 website

http://www.math.umd.edu/∼evs/Mini.MCMC/Lec2Figs
or at

http://www.math.umd.edu/∼evs/s798c/Lec03Pt6.pdf
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