Minicourse on:

Markov Chain Monte Carlo: Simulation Techniques in Statistics

Eric Slud, Statistics Program

Lecture 2: The 'Gibbs Sampler', via motivation from Metropolis-Hastings. Statistical applications in hierarchicalmodel inference, with computational examples.

Outline

(I) Begin with re-cap of Gibbs-Sampler motivation from 1st Lecture and ideas of checking for convergence in Example of generating uniform random 10-vector within unit simplex further restricted by another linear constraint. Compare behavior of Gibbs-sampler version.

(II) General definition of Gibbs-Sampler. Relation to Metropolis-Hastings. First examples.

(III) Relation of Gibbs-Sampler to Bayesian statistical analysis. Example of random-intercept logistic regression inference. Geometric-Prob. Example. Define unit simplex

$$B = \{ (x_1, \dots, x_d) : x_i \ge 0, \sum_{i=1}^d x_i \le 1 \}$$

and for fixed $\mathbf{a} \in (\mathbf{R}^+)^d$, b > 0, objective was to simulate uniform random point in

$$D = \{ \mathbf{x} \in B : \mathbf{x} \cdot \mathbf{a} \le b \}$$

Fixed d = 10, and (random, but fixed) choice $\mathbf{a} =$

 $0.513 \ 0.944 \ 0.960 \ 0.116 \ 0.032 \ 0.944$

 $0.691 \ 0.489 \ 0.020 \ 0.710$

and $b = \mathbf{a} \cdot \mathbf{1}/20 = .271$.

Metropolis-Hastings Algorithm

We defined Proposal Markov Chain which, starting from point $\mathbf{x} \in \mathbf{R}^d$ had transition step with conditional density $q(\mathbf{x}, \cdot)$ consisting of multiplication of the coordinates x_i by independent r.v.'s e^{Z_i} with $Z_i \sim \mathcal{N}(\mu(\mathbf{x}, \alpha))$. M-H Algorithm using this chain takes the form: if $\mathbf{X}_1, \ldots, \mathbf{X}_k$ have already been generated, $Y_k \sim q(X_k, \cdot)$ and $U_{k+1} \sim \text{Unif}[0, 1]$ are simulated and then:

$$X_{k+1} = Y_k$$
 if $U_{k+1} \le \frac{\pi(Y_k) q(Y_k, X_k)}{\pi(X_k) q(X_k, Y_k)}$

and $= X_k$ otherwise.

Another Proposal Chain

Transition affecting only *i*'th coordinate of $\mathbf{x} \in D$ is to replace x_i by conditional distribution for *i*'th coordinate of random D point given coord's $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_d$, or

Uniform(0, min $(1 - \sum_{j:j \neq i} x_j, (b - \sum_{j:j \neq i} a_j x_j)/a_j))$

New 'proposal-chain' step is to do these replacements for all $i \in \{1, ..., 10\}$. (In practice, we do them in random order!) This is the **Gibbs Sampler** for the present example.

Plotted picture shows that the blocks of successive smoothed-histograms for quantities $x_1 + \cdots + x_6$ by this method behave very stably!

Here is another indicator of convergence: tallied numbers of $x_1 + \cdots + x_6$ values in blocks of 1000 which fall in bins defined by breakpoints (0, .2, .3, .4, .45, .5, .55, .6, .7, .8, 1); then tallied same for another block of 1000 occurring 10000 iterates later.

Interval										
Count1	35	132	208	105	94	96	99	124	76	31
Count1 Count2	34	104	189	112	103	113	101	121	90	33
T										

Two-sample χ_9^2 value is 7.566, which is OK!

Simple Gibbs-Sampler Example

Consider the problem of sampling bivariate r.v.'s from the joint density on the positive quadrant:

$$f(x,y) = c \exp(-x - y - 4xy)$$

Exact joint dist. fcn is messy, but *conditionals* are not:

$$f_{X|Y}(x|y) = (1+4y) e^{-x(1+4y)} \sim \text{Expon}(1+4y)$$

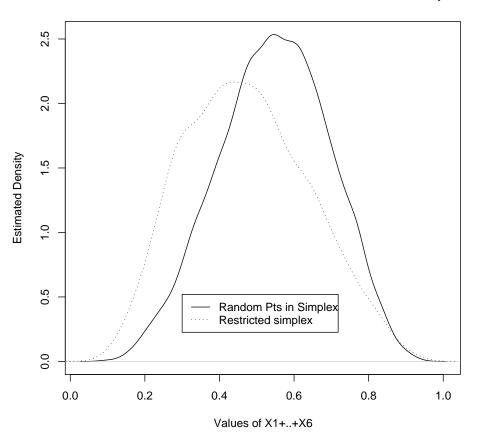
(by symmetry, conditional for Y given X has same form). Simulating exponentials is easy:

$$U \sim \text{Unif}(0, 1) \quad \Rightarrow \quad \frac{-\log U}{\lambda} \sim \text{Expon}(\lambda)$$

So begin with (X_0, Y_0) arbitrary (say independent Expon(1) coord's). Next

 $X_{t+1} \sim \text{Expon}(1 + 4Y_t)$, $Y_{t+1} \sim \text{Expon}(1 + 4X_{t+1})$

Generated 10,000 successive pairs (X_t, Y_t) this way:



Densities for Partial-Sum RV Based on Random Pts in Simplex

Figure 7: Plot of true density (hollow points) and 5 smoothed-histogram (density-estimate) pictures based on 5 successive blocks of 1000 x-values in bivariate exponential Gibbs-sampler example. Five thousand pre-iterates (M = 5000) preceded the first block.

General Gibbs-Sampler Step

So what characterizes the *Gibbs Sampler* as an MCMC technique is (primarily) that sampling transition-steps are done from the **full conditionals** and (usually) that the M-H acceptance probabilities are always 1.

Full conditionals means simulation of a random vector $\mathbf{X} = (X_1, \ldots, X_K)$ in a setting where all

 $f_{X_i|(X_j, j \neq i)}(x_i | \mathbf{x}^{(i)}))$, $i = 1, \dots, K$ are simple to simulate from.

A single complete transition-step consists of a complete pass $\mathbf{X} \mapsto \mathbf{X}'$ through all components, say

 $X'_i \sim f_{X_i|(X_j, j \neq i)}(\cdot \mid (X'_j, j < i; X_j, j > i)) , i = 1, \dots, K$

If the actual conditional densities for the desired joint density are used, and the order of stepping through coordinates is randomized, then this is a Metropolis-Hastings step with all acceptance-probabilities = 1. This was the case in the previous examples with random point from simplex, and with bivariate exponential (K = 2).

Resulting chain is $f_{\mathbf{X}}$ irreducible under the *Positivity condition* saying:

$$f_{X_i}(x_i) > 0$$
 for $i = 1, \dots, K \implies f_{\mathbf{X}}(\mathbf{x}) > 0$

General Gibbs-Sampler, continued

Note: the positivity condition is satisfied in both of the previous examples.

Hammersley-Clifford Thm, 1970. Under the positivity condition, $f_{\mathbf{X}}$ is uniquely determined by the full conditionals, satisfying $\forall \mathbf{x}'$

$$f_{\mathbf{X}}(\mathbf{x}) \propto \prod_{i=1}^{K} \frac{f_{X_i|X_j, \, j \neq i}(x_i \mid x_j, \, j < i; x'_j, \, j > i)}{f_{X_i|X_j, \, j \neq i}(x'_i \mid x_j, \, j < i; x'_j, \, j > i)}$$

Proposition. Under the positivity condition, if the Gibbs-Sampler Markov Chain is aperiodic, then for a probability-1 set of initial values \mathbf{X}_0 , as $t \to \infty$, the probability law of \mathbf{X}_t converges in total variation to the unique limiting distribution with density $f_{\mathbf{X}}$.

Bayesian vs. Frequentist Applications

Most statistical applications of MCMC involve likelihoodbased estimation of parameters from data. Paradoxically, the Gibbs Sampler is applied to simulate not data (Z_1, \ldots, Z_n) but parameters $\vartheta \in \mathbf{R}^p$!

Suppose for fixed but unknown parameter value $\vartheta = \theta_0$ the data are *iid* $Z_i \sim f(z|\vartheta)$. The observed data $(Z_i, 1 \leq i \leq n)$ are regarded as fixed, and statements about parameters ϑ compatible with the data are generally based on the **Likelihood**

$$L(\vartheta, \underline{Z}) = \prod_{i=1}^{n} f(Z_i | \vartheta)$$

as function of ϑ .

Frequentist statisticians often calculate:

(1) (**MLE**:) maximize $L(\cdot, \underline{Z})$ at $\hat{\vartheta}$, or (2) (**Test-based CI**:) $\{\vartheta : \frac{L(\hat{\vartheta}, \underline{Z})}{L(\vartheta, \underline{Z})} \leq \exp(\frac{1}{2}\chi_{p,\alpha}^2)\}.$

Bayesian statisticians treat ϑ as random, distributed with prior density π , and calculate:

(3) (**Posterior density**:) $f_{\vartheta|\underline{Z}}(\vartheta | \underline{Z}) = \frac{\pi(\vartheta) L(\vartheta, \underline{Z})}{\int L(a, \underline{Z}) \pi(a) da}$

Note: if we can fix prior π to be uniform over some large fixed region in \mathbf{R}^p containing θ_0 , then (1)-(2) can be viewed as resp. the *mode* (maximizer) and levelexceedance region for the *posterior density* (1).

So we simulate the parameter ϑ as a random variable with the posterior density, and derive quantities (1)-(3) **empirically**.

Hierarchical Models

Certain Bayesian-motivated models allow factorizations that make Gibbs Sampling particularly handy:

Hierarchy is:

$$X \sim f(x, \vartheta)$$
, $\vartheta \sim g(\theta, \eta)$, $\eta \sim h(\eta, b_0)$, etc.

Additional structure used in simplifying conditionals:

Exponential families: $f(x, \vartheta) = k(x) \exp(T(x) \cdot \vartheta - \psi(\vartheta))$

Conjugate priors: if $\eta = (\mu, \lambda)$ and prior density for ϑ parameter is

 $\pi(\theta) = g(\theta, \eta) = K(\eta) = \exp(\theta \cdot \mu - \lambda \psi(\theta))$

then posterior $f_{\vartheta|x}(\theta|x) = g(\theta, (\mu + T(x), \lambda + 1)).$

Example – Nuclear Pump Failures

Consider the following data (example pp. 301-2 in Robert & Casella 1999, from earlier paper by other authors)

F T 94.3 15.7 62.9 125.8 5.2 31.4 1.1 1.0 2.1 10.5 The model is that the numbers n_i of failures (F) for

pump *i* in time $T=t_i$ are $Poisson(\lambda_i t_i)$ r.v.'s, with

 $\lambda_i \sim \text{Gamma}(1.8, \beta)$, $\beta \sim \text{Gamma}(.01, 1)$

Recall that

$$f_{\text{Gamma}(a,b)}(y) = \frac{b^a y^{a-1}}{\Gamma(a)} e^{-by} , \qquad p_{\text{Poiss}(\mu)}(k) = \frac{\mu^k}{k!} e^{-\mu k}$$

Then the posterior density (regarded as a joint density for the unknown parameters β and $\lambda_1, \ldots, \lambda_{10}$) is

$$\propto \prod_{i=1}^{10} \left\{ (\lambda_i t_i)^{n_i} e^{-\lambda_i t_i} \beta^{1.8} \lambda_i^{.8} e^{-\beta \lambda_i} \right\} \beta^{-.99} e^{-\beta}$$

so the conditionals are:

$$\lambda_i \sim \text{Gamma}(n_i + 1.8, t_i + \beta) \text{ given } \beta, \lambda_j : j \neq i$$

$$\beta \sim \text{Gamma}(18.01, 1 + \sum_{i=1}^{10} \lambda_i) \text{ given } \underline{\lambda}$$

Example, continued. Simulated successively from these conditionals, starting from $\beta_0, \underline{\lambda}_0$ from prior. Generated 10,000 Gibbs-Sampler iterations $(\beta_t, \underline{\lambda}_t)$.

Note that we are really interested primarily in β , although λ_i would be useful in forecasting future failures, since they are the pumpwise rates. (Even frequentists would include the λ_i if only to simplify the likelihood which is otherwise a mess involving Gamma functions !)

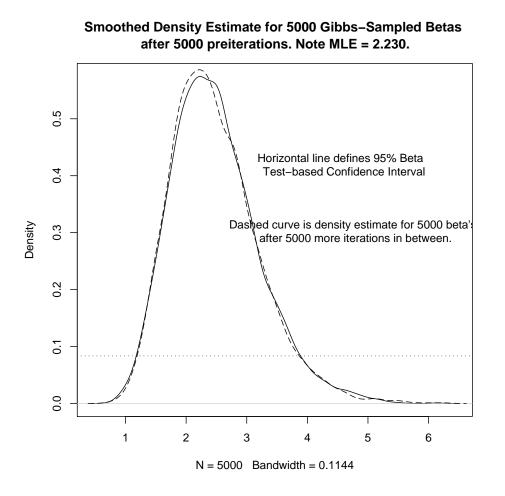


Figure 8: Smoothed density estimate for 5000 Gibbs-Sampled beta values, after 5000 burn-in iterations (solid curve). Dashed curve is density estimate for 5000 beta values after 5000 more intermediate iterations. Maximized posterior density (or likelihood) gave MLE for beta of 2.23, and test-based confidence interval for beta approximately (1.2, 3.9).

Remark about MCMC algorithms.

The choice of stopping-criterion is still not well understood: Jones and Hobert (2001) following Meyn & Tweedie (1993) and others show how to find computable theoretical bounds for rates of *geometric ergodicity*, but these may not accurately reflect algorithms' success in practice. There is room for a lot of computational experience **and** theoretical research here !

Random-Intercept Logistic Regression

An interesting class of statistical applications can be handled by either Metropolis-Hastings, MCMC, or missingdata (EM) techniques. These are statistical models with **random effects**. A good example is *random-intercept logistic regression*: suppose for experimental units i =1, ..., m, we observe data on n_i potential occurrences and see R_i occurrences, with explanatory or *predictor* vector variables \mathbf{W}_i assumed to affect the outcomes according to a model

 $R_i \sim \operatorname{Binom}(n_i, \pi_i)$, $\log \frac{\pi_i}{1 - \pi_i} = a + \mathbf{b} \cdot \mathbf{W}_i + u_i$ where $u_i \sim \mathcal{N}(0, \sigma^2)$ are unobservable and independent random effects related to unmodelled random differences between the experimental units, and $\vartheta = (a, \mathbf{b}, \sigma^2)$ are unknown statistical parameters which must be estimated (say by Maximum Likelihood). Because of the unobserved (integrated-out) variables u_i , the likelihood is complicated. An extended comparative discussion of how to calculate and maximize this likelihood is given on the Lecture 2 website

- http://www.math.umd.edu/~evs/Mini.MCMC/Lec2Figs
 or at
- http://www.math.umd.edu/~evs/s798c/Lec03Pt6.pdf

References

Casella, G. and George, E. (1992) Explaining the Gibbs Sampler. *Amer. Statistician* **46** 167-174.

Chen, M.-H., Shao, Q-M., and Ibrahim, J. (2000) Monte Carlo Methods in Bayesian Computation. Springer.

Jones, G. and Hobert, J. (2001) Honest exploration of intractable probability distributions via Markov Chain Monte Carlo. *Statist. Sci.* **16** 312-334.

Robert, C. and Casella, G. (1999) Monte Carlo Statistical Methods. Springer.