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Survival Densities & Regression
from Phase-Type Models

Eric V. Slud, Census Bureau & Univ. of Maryland
Jiraphan Suntornchost, Univ. of Maryland

OUTLINE
I. History : Survival densities & Phase-type Models
II. Motivations for Parametric Densities
III. Phase-type representations & parameterizations
IV. Model-fitting, Software & References

V. Data analysis: SEER Breast Cancer Data 1992-2002
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Actuarial Sources

qz = age-specific death rate

Features of hazard curves: { g = force of mortality = hazard

e increasing, decreasing, or ‘bathtub’ shapes
e Gompertz (1825) & Makeham (1864): ¢, = A+ Bc*
e power law, Weibull (1939): fe = Bax® 1

T hese models unified by:

Fréchet-Fisher-Tippett-Gnedenko (1927-1948) Theorem
characterizing distribution limits of maXj<;<, X; for iid r.v.’s

But practical actuaries rely on ‘Graduation’
(Whittaker-Henderson smoothing splines) to fit gz

What we would call a nonparametric approach ...



Demography

Heiligman-Pollard (1980) eight-parameter model:

G — AG@+B)Y L D exp(—Elog? %) 4+ GH"

parameters not interpretable, messy to fit, not really practical

Demographers also use a highly parameterized, effectively
nonparametric model:

Lee-Carter (1992): l0o9qst = az + Byt + €t

widely used as benchmark model, generalizes
linear t-projections of z-mortality (often ~ = linear)



age-specific log mortality rates
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Age-specific log mortality rates from six leading causes of death
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Digression: Extension of Lee-Carter Cause-
Specific & Forecasted Curves

Suntornchost, Slud & Wei (2011) findintervalsofa gesz with
different time-profilesy; fordistinct death-causes.

Fit spline-smoothedy ; in each age-group
to NCHS cause-specific m ortality curves.

Use disaggregated, not combined, model to forecast in ¢t.

Parameterization reduced when data are cross-classified.



Threshold-crossing (Cum. Damage) Models

Models in reliability (Singpurwalla 1996): X (¢) underlying
unobservable stochastic process (‘degradation’, 'damage’)

Failure occurs when X(t) crosses threshold a
Correlated process Y (t) may be observed

If X(t) is Wiener process with drift, waiting-time T to cross is
2-parameter Inverse Gaussian: extended reflection principle

gives P(T <t) = P(maxp<s<tX(s) > a)

General approach to survival hazards: Aalen & Gjessing (2001),
Regression models: Lee & Whitmore (Stat Sci 2006)
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Pictures of paths for Degradation Process X in relation to Failure
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Slide from Vasilis Sotiris thesis presentation on
simultaneous regression models for degradation & failure.
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          Slide from Vasilis Sotiris thesis presentation on
   simultaneous regression models for degradation & failure.
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Biomedical Models — Markov Chains

Healthy — Iliness — Death progressions (Infectious Disease)

Latent State, Multihit models: internal transformations of cells
(developmental disease, Cancer)

Armitage & Doll (1954) observed power law for cancer incidence:
P(Ty<t) ~ ctF over range of t, suggested T distributed as
sum of indep. Expon. waiting times

A
I N I T N = S v AV T

Moolgavkar (2004): multistage cancer causation models
now explanatory, supported by genetic/biologic evidence
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Phase-Type Models

Definition: a phase-type r.v. is the absorption time into
death-state in continuous-time homogeneous Markov chain.

Initial state is O, terminal state D, other states {1,...,k},
(k+ 2) x (k4 2) transition intensities Q@ = {qg,4}, @1=0

P(T <t) = (exp(tQ))op = Fop(t)

Origins in applied probability, Queueing (M. Neuts 1981) and
Compartmental Models in pharmacokinetics.



Phase-type Representations

Continuous-time constant hazard state transitions represent many
statistical modeling constructions: class is closed under

sums of indep. r.v.’'s, mixtures, min’s and max’s of indep.’s

Inverse-Gaussian and other diffusion boundary-crossing times ob-
tained as approximate absorption-times:

random walk with drift: up-steps rate p\, down (1 —p)\

State (j,m) denotes m net up-steps after 5 > 0 transitions.
Define all states with m > A to be lumped as D death-state.

Process approximates Wiener-process trajectory with time ¢t =
i/A,  o?2=p(l—-p), drift (2p— 1))



Why Parametric Densities 7

Even though nonparametric methods in biostatistics (semipara-
metric regression models) are available,

parametric survival models still have useful role when:

e subjects are highly cross-classified with widely varying prog-
NnOSis, as in cancer databases like SEER, or

e different covariates might influence different steps in multi-
stage illness/death pathways, or

e researchers are looking for hints whether different phenomena
are operating in subpopulations (mixtures).

Parsimony may require many of the phase-type transition rates
to be common or related.
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Fig. 1 Markov transition diagram for Model F with immediate cures and failures, additional
direct failures from states 1, 2, and two failure pathways.



Example, Special Phase-Type Model

The Phase-Model Picture just shown has the features:

After waiting for time T7 ~ Expon((1+bo 4+ bp)u),

(bC7 bD7 b, 1 _p)
14 bo + bp

O—C,D,1,k+1 with prob.’s

From state 1, absorption time to D is a mixture
W. prob. gq1 =p81/(61+ A1) , = T1p ~ Expon(A1 4+ 51),

w. prob. 1—-¢q;, =Tip+G; ,G1~ Gamma(k; —1,A1)

Similarly, cond’l absorption time from state 2 is a mixture
W. prob. ¢g», 1 —¢go of T>p ~ EXDOI’](AQ —|—62) and 1>p + Go,
where g> = B2/(B2+ A2), G~ Gamma(ks —1,X2).

10



Computing Formulas for Likelihood in Model F

_ bp  —u(1+botbp)t
Pop(t) = 1+bC‘|’bD(1 e )

q; Exp(u(1 +bc +bp)) x Exp(B; + A;)(¢)
+ (1 —q;j) Exp(u(l 4+ bc + bp)) * EXp(B; + Aj) * Gam(kj, A;)(¢)

where for S ~ Exp(a), T ~ Exp(b), U ~ Gam(r, \),

ab

; (e~ — 70ty fsau(t) also explicit
— a

fe4r(t) =

11



Breast Cancer Data Analysis Using Model F

Data from SEER cancer database 1992-2002,
as in Anderson et al. (2006): motivation of that paper is separat-
ing post-diagnosis mortality by Estrogen-Receptor (ER) status

analyzed data on 198,785 white female breast-cancer cases
from time of diagnosis

e first fit proportional hazards (Cox) model to remove effect of
Diagnosis Year

e then produced summary survival curve, fitted smoothing spline,
produced density.

12



Density
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Density

0.000 0.001 0.002 0.003 0.004

Summary Survival Densities
Adjusted for Year—of-Diagnosis

— spline—smoothed

4-param, 1-path
----- 5-param, 1-path
-—-— 7—param, 2—path

I I I I I I I
0 20 40 60 80 100 120

Time (months)




EM algorithm (Asmussen et al. 1996)

Consider the embedded Markov chain Ig, I7, ..., Ipj—1
(Ip; = D), and sojourn times Sp,S1,...,S1_1-

y = (y1,92,...,yN), Sample of phase-type observed times

‘Complete observation’: x = (ig,%1,---,%0/—1, SOs---,SM—1)
and sojourn times satisfy y=sg+s1+so+.... +sp_1.

Transient states are {1,...,p}, absorbing D.

Transition intensity matrix is Q = ( rg 8 )

pjk =PUpp1=kl|In=173) = tj;/(—=q;;), ke{l,..,p,D} \{j}

13



The density of complete sample (x) can be written

N
fo6 T =[] (ﬁwffn)ﬁexp(tgf)Zi(”))ﬁ ﬁ (tgy))Ni§”>),
=1 =1 1=1

i=1j=0,j#i

where 7 = initial distribution for the Markov Chain, and
(n) —
Bt = =y
m(n)—1
ZZ.(”) — Z I{ISL):Z.}S,E”) = total time the process spends in state ¢

k=0

m(n)—1
() _ _ . o
N~ = Z I{Il@:i’[%:j} = number of jumps from state ¢ to j
k=0

14



Special case

2 | ~—=| 3 | —— | 4 || 5
Oz/ \)\1
1 D
\0‘2 Ao
A /
6 2 7

The mixture of Exp(a1) * Gamma(4, 1) and
Exp(as) * Gamma(2, \»).

15



The log-likelihood function is given by

| = log(a1) Z N® +log(A1) Z(Z NS+ N

n=1 =2
+ log(aw) Z N(”> + log(A1) Z(Né?) + N%))
n=1
— (a1 + az) Z Z{ -\ Z(Z ZM)
n=1 =2

— X Z(Zé”) +27).

n=1

16



E-step

Unknown ‘parameters’ N,g‘), ZZ.(”) for uncensored observations

(1 < n < N) are replaced by conditional expectations given
observed data as in Asmussen (1996) :

By (ZE)Y = yn) = ci(yn < ilm, T) /(7 b(ya| T))
By (NSY = o) = 97 ¢;(yn + ilm, T) /(7 b(ya| T))
E(r ) (foS)IY = yn) = tiai(ya|m, T) /(7 b(ya|m, T)),

where a, b, c(-;i|-) for 1 <i<p are p-dim vector functions

a(y|m, T) = mexp(Ty) b(y|m,T) = exp(Ty)t

c(yilm, T) = /Oy {w exp(Tu) e,,;} {exp(T(y _ u))t} du

17



The unknowns a, b, ¢ are obtained by solving ordinary
differential equations, by the Runge-Kutta numerical method :

a'(y|r,T) = a(y,n,T)T
b'(y|m, T) = Tb(y,n,T)
c'(y,ilm,T) = Te(y,i|r, T) + a;(y,m, T)T , i=1,.,p

18



M-Step

The likelihood is maximized, and ML estimates are given as:

Z NG
Z 3 2
Z N
S
=

Z(Z Ny 1y + Nsp)

_n112

Z <Z Z™)

n=1 =2

N
> (Ng? + Nip)

n=1

= .
> (28 + 25y
n=1
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Fisher Information by an EM algorithm

By Oakes (1999), the Fisher information matrix is given by sub-
stituting 6; = 6 into

921(01 ;) _ {32Q(92|91)
063

+82Q(92|91)}| B
962 80,80, 10201

where

Q(02[01) = Eg, (I(02; 2) | y),

and z = (z1,...,2x) denotes the complete dataset for the N
observations.

20



Q(0]601) = Ep (1(62; 2) |y)

2_

= log(&1) Z E(N{Dly) + log(R1) Z E(Z N+ Ny

nl =2

+ log(a2) Z E(N{2[y) + log(X2) Z E(Ngy + N3B1y)

n=1 n=1
— (@1 + a) Z E(Z{"ly) - X1 Z E<Z z"y)
n=1 1 =2

%Y B + 20)

n=1
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With the notations:

where

/ c1(yn : 1|m, T)
c25(yn|m, T)
c1(yn : 1|m, T)
\ ce7(yn|m, T)

ME®™ =

5

c2(yn - 1|m,T) \
cs2(yn|m, T)
ce(yn : 1|7, T)

C?6(fyn|ﬂ'a T) )

c25(ynlm, T) :=> ci(yn : i|m, T)

1=2
4

cs2(ynlm, T) = cip1(yn @ i|m, T) +as(y : 7, T)

1=2
7

667(yn|7T7T) = ZCZ(yn : Z|7T7T)

1=6

cre(yn|m, T) := c7(yn : 6|7, T) + a7(y, : 7, T)

22



The Fisher Information matrix

92Q(¢196) n 82Q(¢9)
060 90,00

L= (L,L]) = —( )¢_9 IS given by

N
1 0 0
Lij= > [89jME§§) - %ME%)}

N 1 5,
iy (f(yn))2 00,

fun) [MED) — MES),
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To find the Fisher Information matrix numerically, we solve the
following two systems of equations:

d
~e(y|m, T) = Te(y|r, T)
Yy

d oT .
@Té )(y) = e(yl, T)% + Té )(y)T

dic(“(ym T) = TC™ (y|r, T) + t ® (me(y|r, T))
()

d _(n n ot
d—ycg (i, T) = (t@ (7T () + @) ® (me(ylm, 1))
+ TC{ (y|m, T) + C<”)(y|7r T)

where e(y|m, T) = exp(Ty) ,
necker product.

0
T(")(yn) = %exp(Tyn) and ® denotes a Kro-
The system of differential equations can be solved by the
Runge Kutta method with the initial value e(0|x, T) =1,, and C(0|r,T) =

C{%(0lr, T) = C{”(0|r, T) = Ty (0) = O, for all 6 € {a1, A1, a2, X2}.
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Numerical Results

We consider the mixture of Exp(a7) * Gamma(4, A1) and
Exp(as) * Gamma(2, A»), with sample size of 100.

Parameters | True values MLE SD
o1 0.15 0.06477 | 0.05564
A1 0.15 0.91316 | 0.50344
o 0.25 0.17920 | 0.42455
Ao 0.12 0.09735 | 0.01896




Remarks on EM approach

EM approach applicable to general Phase-Type models

Algorithm converges slowly (up to 10%+ iterations).

Occasionally converges to local maximum or saddle point.

Method scales up linearly with sample size N:
must solve N - R - (p+2) ODE's, where
R = # iterations and p = # transient states.

26



Numerical Results for Direct ML Estimates

e study performance of parameter estimates as
function of sample size.

e special case : (p, u, A1, o) = (0.3,2.0,0.2,0.3), and
(b07bDaﬁla/82) fixed = (0707070)

27



Parameter (p, u, A1, \») MLE’s and SE’s (in parentheses)
on transformed scale (logit for p, log for others) by sample
size N, for single simulated datasets with k1 =4, k>, = 3.

True [ N=100 | N=1000 | N=10* [ N=2-10* | N = 10°

logit(p) -0.847 | -0.427 0.169 | -0.817 “0.935 | -0.754
(SD) (0.522) (0.639) | (0.186) (0.147) | (0.057)
log(p) 0.693 | -1.136 -0.983 0.457 0.730 0.578
(SD) (0.906) (1.026) | (0.232) (0.188) | (0.082)
log(\1) -1.609 | -1.457 -1.398 | -1.600 -1.623 | -1.595
(SD) (0.094) (0.154) | (0.033) (0.026) | (0.010)
log(\2) -1.204 | -0.696 -0.619 | -1.184 -1.221 | -1.177
(SD) (0.279) (0.347) | (0.046) (0.031) | (0.015)

28



T he Observed Fisher Information

e [ he per—obsgr\vation Fisher Information matrices are esti-

—H(0)

mated as . H(0) is the hessian matrix.

e This observed Fisher Information I;(J) for N = 10° has
eigenvalues 1.2601, 0.770,0.0054, 0.0012

e Consider the linear combinations of the parameter estimates

v1 10git(p) 4+ vz log(fi) + vz log(A1) +valog(Ao)) , of eigenvec-
tors of the Information matrix

29



e For large sample size N, theory predicts SE'’s (1/,/>\jN) ;
.891/+v/N, 1.139/+/N, 13.550/+/N, 28.911/+/N

e 1st eigenvector linear combination of MLE's
216 logit(p) — .075 log(fi) — .425 log(\1) — .877 log(X2))
is well estimated at 1.246 with predicted SE = .028 .

e 4th eigenvector combination
482 logit(p) — .85910g(a) + .08210g(X1) + .152 log(Xs)
is very badly estimated at 0.717 with predicted SE .914.



R Packages for Densities & Data Analysis

actuar phase models Goulet & Dutang computation of density
involves numerical exp(tQ): ODE system

dphtype, rphtype, for phase-type density, simulation, & mgf

Parameter estimates in right-censored survival data via EM: As-
mussen et al. (1996), Olsson (1996). EMPht C-program.

30
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Monte Carlo Results

Study asymptotic properties of the Hessian matrix by comparing
estimated Fisher Information Matrices in two cases:

e Fisher Information matrix based/gn one iteration of 200000
simulated samples, I7(8) = (—H(#))/200000

e Fisher Information matrix based on B (= 1000) iterations of

R 1 B — (b
20000 simulated samples, I5(0) = 5 > (—H(Q)( ))/20000
b=1

e Results show well asymptotic property of Fisher Information
matrix for large sample size.

32



Numerical Results

Fisher Information matrix based on one iteration of 200000
simulated samples (black) and B (= 1000) iterations of 20000
simulated samples (blue).

logit(p)  log(p) log( B1) log(B2) log(A1) log( A2)
logit(p) 0.0148 -0.0048 -0.0179 -0.0046 -0.0229 -0.0315
0.0193 -0.0061 -0.0179 -0.0106 -0.0240 -0.0296
log(p) -0.0048 0.0950 0.0337 0.1011  0.0041 -0.0191
-0.0061 0.1003  0.0316 0.1070 0.0038 -0.0213
log( 31) -0.0179 0.0337 0.0542 0.0859  0.0095 0.0065
-0.0179 0.0316 0.0562 0.0733 0.0105 0.0101
log(3,) -0.0046 0.1011  0.0859 0.2160 -0.0430 -0.0621
-0.0106 0.1070  0.0733 0.2203 -0.0411 -0.0631
log(\1) -0.0229 0.0041  0.0095 -0.0430 0.1512 0.0099
-0.0240 0.0038 0.0105 -0.0411 0.1644 0.0071
log( A2) -0.0315 -0.0191  0.0065 -0.0621  0.0099 0.1349
-0.0296 -0.0213  0.0101 -0.0631  0.0071 0.1337
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