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General Formulations of Semiparametric
Missing-Data & Calibrated Problems

General Objective: formulate iid problems with

‘survey-like’ features, and define what it means for a

survey estimator to be large-sample optimal.

iid data (X
(1)
i , Ri, Ri(Yi, X

(2)
i )), 1 ≤ i ≤ n

These may be observed data or a biased sample

using a known function w(X
(1)
i ) so that underlying data

are drawn not from fX,R,Y ((x
(1), x(2)), r, y) but from

fX,R,Y (x, r, y)w(x
(1)) /

∫ ∫ ∫
fX,R,Y (u, t, v)w(u

(1)) du dt dv

For discussion of estimation from biased sampling models:

Gill, R., Vardi, Y. and Wellner (1988, Ann. Statist.)

projecteuclid.org/euclid.aos/1176350948.

In the data triple, the covariate vector X
(1)
i is al-

ways observed, Ri = 0, 1 is a response indicator,

and Yi is the attribute of interest.

Target of estimation is E(Y1).
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Approach via Parametric Models, Likelihood

Specify joint density of the data through

X ∼ f0(x, η1) wrt τ (dx)

Y given X ∼ f (y−µ1−m1(x) | x, η2) wrt ν(dϵ)

ϵ ≡ Y − µ1 −m1(X)

P (R = 1 |X, Y ) = P (R = 1 |X) ≡ π(X, η3)

subject to

∫
m1(x) p0(x) dτ (x) = 0

∫
ϵ f (ϵ |x) dν(ϵ) = 0

and maybe (as in Chen & Qin 1993)

∫
w(x) g(x) dτ (x) = 0
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Recall from Chapter 3 (Parametric)

from Tsiatis (2006) book

Regard µ1 = E(Y ) as scalar parameter of interest,

and parameterize nuisance functions

m1(x, β), f0(x, η1), f (ϵ|x; η2), π(x, η3)

If Xi = X
(1)
i , then likelihood is L(X, R, RY ) =

n∏
i=1

[ f0(Xi)π(Xi)
Ri (1−π(Xi))

1−Ri f (Yi−µ1−m1(Xi) |Xi)
Ri ]

subject to constraints. RAL estimators must satisfy

µ̃1 − µ1 =
1

n

n∑
i=1

φ(Xi, Ri, RiYi) + oP (1/
√
n)

for influence function φ(·) such that

φ(X,R,RY ) ⊥ Λβ,η1,η2,η3 = cls(Sβ, Sη1, Sη2, Sη3)

and

φ(X,R,RY ) = Π(−R
f ′(ϵ|X)

f (ϵ|X)
| Λ⊥

β,η1,η2,η3
)

plus a component orthogonal to all of the parametric

scores.
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This leads (Robins and Rotnitzky 1995, Z. Tan 2006,

2007, Tsiatis 2006) to optimal estimator of the form

φ =
R

π(X)
(Y − m1(X) − µ1) + m1(X)

and suggests (borne out in other Z. Tan papers) that with

the additional calibration constraints E(w(X)) = 0, the

optimal estimators will combine:

mean-centered outcome predictions m̂1(Xi)

inverse prob-weighted resid’s
Ri

π̂(Xi)
(Yi− µ̂1− m̂1(Xi))

calibration residuals
Ri

π̂(Xi)
(Xi − ˆ̄X)
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Additional Details in Modified Formulation

Now forget about µ1 and let the parameter of interest

be β in the Outcome Model Y = µ(X, β) + ϵ,

but retain distinction between X(1), X(2).

NB. Y, ϵ ∈ Rd, β ∈ Rq

Reference: Chapters 4 and 7–9 of Tsiatis (2006).

Consider influence functions φ(X
(1)
i , Ri, Ri(Yi, X

(2)
i ))

∝ functions spanned by scores ∂
∂θj

logL

⊥ nuisance tangent space spaned by Sη1, Sη2, Sη3.

(I) Restricted moment model : with π(x, η3) ≡ 1,

(Thm 4.8) Λ⊥
η1,η2

= {Aq×d(X)(Y−µ(X, β)) : anyA}

influence fcns [E(A(X)D(X))]−1 A(X) (Y−µ(X, β0))

where

D(X) =
∂µ(X, β0)

∂βT
= Jµ(X,·) | β0

Unique efficient influence function uses

A(X) = D(X)T [E({Y − µ(X, β0)}⊗2 |X)]−1
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(II) Restricted moment with nonresponse by de-

sign : η3 known, π(x, η3) > 0,

(Thm 7.2) influence fcns [E(A(X)D(X))]−1 ·

[
R

π(Y,X(1))
A(X) (Y−µ(X, β0)) + (

Ri

π(Y,X(1))
−1)L(X(1))]

(III) Models for Outcome and Nonresponse: η3
unknown, π(x, η3) > 0,

(Thm 8.3) influence fcns

∝ [
R

π(Y,X(1))
A(X) (Y − µ(X, β0))

+Q(X, Y )R + Q∗(X(1)) (1−R)]

− Π( [ · ] |span(Sη3) )

where

Sη3 =
∂π

∂η3
· R− π

π(1− π)
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Idea of Estimating Equations with

Specified Nuisance Functions

(A) Taylor linearization about β0 says that the solu-

tion of the estimating equation

n∑
i=1

[
Ri

π(Yi, X
(1)
i )

A(Xi) (Yi − µ(Xi, β)) +

+ (
Ri

π(Yi, X
(1)
i )

− 1)L(X
(1)
i )] = 0

has influence function as in (II) above (cases of non-

response by design)

(B) Also: if η̂3 is estimated via MLE in

Binom(1, π(Yi, X
(1)
i ) conditional likelihood for Ri, then

get influence function of form in (III) above for

n∑
i=1

[
Ri

π(Yi, X
(1)
i , η̂3)

A(Xi) (Yi − µ(Xi, β)) +

+ Q(Xi, Yi, Xi)Ri + Q∗(X
(1)
i ) (1−Ri)] = 0
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Alternative: Adjusted-Weight Calibration

min
w

n∑
i=1

Ri di Gi(wi, di)

subject to

1

n

n∑
i=1

Ri wi Xi =
1

n
tX or E(X)

followed by estimator n−1 ∑n
i=1 Riwi Yi.

Empirical likelihood takes Gi(wi, di) = − log(wi/di),

and has the connection with iid sampling that the dis-

tribution of data triples is approximated by a discrete

distribution with masses pi closely related to wi. The

idea is that (apart from additive constant) the empirical

likelihood approximates − ∑
i∈U logwi and weights wi

are naturally normalized so that
∑n
i=1 wi ≡ N .
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Further Comments on Influence Functions

and Estimating Equations

(1) Always there is only one ‘best’ influence function

in the sense of having minimum variance for the influence

functions of RAL Estimators

µ̂1 or β̂ =
1

n

n∑
i=1

φ(Zi) + oP (
1√
n
)

Efficient influence function always has form

φ(Z) = {E(Seff(Z)Seff(Z)
tr)}−1 Seff(Z)

where

Seff(Z) = Sµ1 − Π[Sµ1 |Λnuis] = Π[Sµ1 |Λ
⊥
nuis]

Yet Tsiatis’ book is filled with results about

characterizing the (unnormalized)

influence function space Λ⊥
nuis .

This is because the efficient score always involves true

but unknown parameters for which we plug in estimators.

This changes the direction of the influence function, but

generally gives another influence function [not necessarily

the efficient one!] for another RAL estimator.
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2) ‘Paradox’ of reduced efficiency in using true

parameter values in estimating equation

Paper of Henmi and Eguchi Biometrika 2004) isolated

the problem as follows:

Theorem 1: assume that the estimating function

u(z, θ) for parameters θ = (β, α) and possible niusance

parameters κ has the property that

Π(sθ(z) |u(z, θ)) ≡ (u∗β(x, θ), u∗α(x, θ))

with orthogonal components u∗β), u∗α. Then with β̃ de-

noting the estimating-equation estimator with fixed α

and β̂ the usual estimating-equation estimator,

avar(β̃) ≥ avar(β̂)

generally with inequality !!

This happens typically if the likelihood factorsL(θ, κ) =

L1(β, κ) · L2(α) and we take uα(z, θ) ≡ sα(x, θ) which is

what happens with our missing-data propensities under

MAR.
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(3) Ryan Janicki (2009 UMCP PhD) thesis covers

cases of submodels within (semi-)parametric models es-

timated via estimating equations.

He shows (in current work being written into paper

with A. Kagan) that in the parametric estimating equa-

tion context, there is a way to generate optimal estimat-

ing equation for submodel in which this phenomenon of

(2) cannot happen !

Notation: estimating function u(z, θ)

with Bu = E(u(Z)u(Z)tr)

and Cu = −E(∂u/∂θ) nonsingular

Projection u∗(z, θ) = Ctr
u B−1

u u

In submodel θ = θ(η) with m = dim(η) < dim(θ) = s

the optimal estimating function is:

Dtr Ctr
u B−1

u u for Ds×m =
∂θ

∂η

So if we want to fix components α and let η = β, θ =

(β, α0), then in general the optimal estimating equation

does not involve just using the β portion of the original

estimating function !
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Likelihood vs Estimating Equation Methods

Tsiatis (pp. 160-163, Ch.7) considers the cases where

there is some missing data, say in the form (RiXi, Ri, Yi)

with response propensity model π(Xi, α) and outcome

model p(y|x, β) likelihood may involve integrals so that

direct maximization in a semiparametric or even high-

dimensional setting may be impossible.

Survey setting:

Consider case of (Ri, X
(1)
i , RiX

(2)
i , RiYi) where response-

propensity models properly depend on both X(1), X (2)

but only X(1) is seen in advance. Maybe we can assume

p(x(2) |x(1), r = 1) = p(x(2) |x(1))

as well as the MAR-like assumption

p(y |x(1), x(2), r = 1) = p(y |x)
Then propensity and outcome models may be iden-

tiable, but likelihood methods are unlikely to work well.
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