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Computer Experiments 

J. R. Koeh ler  and  A. B. Owen  

1. Introduction 

Deterministic computer simulations of physical phenomena are becoming widely used 
in science and engineering. Computers are used to describe the flow of air over an 
airplane wing, combustion of gases in a flame, behavior of a metal structure under 
stress, safety of a nuclear reactor, and so on. 

Some of the most widely used computer models, and the ones that lead us to work in 
this area, arise in the design of the semiconductors used in the computers themselves. 
A process simulator starts with a data structure representing an unprocessed piece of 
silicon and simulates the steps such as oxidation, etching and ion injection that produce 
a semiconductor device such as a transistor. A device simulator takes a description of 
such a device and simulates the flow of current through it under varying conditions to 
determine properties of the device such as its switching speed and the critical voltage 
at which it switches. A circuit simulator takes a list of devices and the way that they 
are arranged together and computes properties of the circuit as a whole. 

In each of these computer simulations, the user must specify the values of some 
governing variables. For example in process simulation the user might have to specify 
the duration and temperature of the oxidation step, and doses and energies for each 
of the ion implantation steps. These are continuously valued variables. There may 
also be discrete variables, such as whether to use wet or dry oxidation. Most of this 
chapter treats the case of continuous variables, but some of it is easily adaptable to 
discrete variables, especially those taking only two values. 

Let X E R ~ denote the vector of input values chosen for the computer program. We 
will write X as the row vector ( X 1 , . . . ,  X p) using superscripts to denote components 
of X. We assume that each component X j is continuously adjustable between a lower 
and an upper limit, which after a linear transformation can be taken to be 0 and 1 
respectively. (For some results where every input is dichotomous see Mitchel et al. 
(1990).) The computer program is denoted by f and it computes q output quantities, 
denoted by Y E R q. 

Y = f ( X ) ,  X E  [0,1] p. (1) 

Some important quantities describing a computer model are the number of inputs 
p, the number of outputs q and the speed with which f can be computed. These vary 
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enormously in applications. In the semiconductor problems we have considered p is 
usually between 4 and 10. Other computer experiments use scores or even hundreds of 
input variables. In our motivating applications q is usually larger than 1. For example 
interest might center on the switching speed of a device and also on its stability as 
measured by a breakdown voltage. For some problems f takes hours to evaluate on 
a supercomputer and for others f runs in milliseconds on a personal computer. 

Equation (1) differs from the usual X - Y relationship studied by statisticians in 
that there is no random error term. If the program is run twice with the same X,  
the same Y is obtained both times. Therefore it is worth discussing why a statistical 
approach is called for. 

These computer programs are written to calculate Y from a known value of X. The 
way they are often used however, is to search for good values of X according to some 
goals for Y. Suppose that X1 = ( X ~ , . . . ,  X p) is the initial choice for X. Often X1 
does not give a desirable Y1 = f ( X 1 ) .  The engineer or scientist can often deduce why 
this is, from the program output, and select a new value, Xz for which Yz = f (X2)  
is likely to be an improvement. This improvement process can be repeated until a 
satisfactory design is found. The disadvantage of this procedure is that it may easily 
miss some good designs X, because it does not fully explore the design space. It can 
also be slow, especially when p is large, or when improvements of y l  say, tend to 
appear with worsenings of y2 and vice versa. 

A commonly used way of exploring the design space around X1 is to vary each 
of the X]  one at a time. As is well known to statisticians, this approach can be 
misleading if there are strong interactions among the components of X.  Increasing 
X 1 may be an improvement and increasing X 2 may be an improvement, but increasing 
them both together might make things worse. This would usually be determined from a 
confirmation run in which both X 1 and X 2 have been increased. The greater difficulty 
with interactions stems from missed opportunities: the best combination might be to 
increase X 1 while decreasing X 2, but one at a time experimentation might never lead 
the user to try this. Thus techniques from experimental design may be expected to 
help in exploring the input space. 

This chapter presents and compares two statistical approaches to computer experi- 
ments. Randomness is required in order to generate probability or confidence intervals. 
The first approach introduces randomness by modeling the function f as a realization 
of a Gaussian process. The second approach does so by taking random input points 
(with some balance properties). 

2. Goals in computer experiments 

There are many different but related goals that arise in computer experiments. The 
problem described in the previous section is that of finding a good value for X accord- 
ing to some criterion on Y. Here are some other goals in computer experimentation: 
finding a simple approximation f that is accurate enough over a region A of X values, 
estimating the size of the error f ( X o )  - f ( X o )  for some X0 c A, estimating fA f dX, 
sensitivity analysis of Y with respect to changes in X, finding which X J are most 
important for each response yk ,  finding which competing goals for Y conflict the 
most, visualizing the function f and uncovering bugs in the implementation of f .  
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2.1. Optimization 

Many engineering design problems take the form of optimizing y1 over allowable 
values of X. The problem may be to find the fastest chip, or the least expensive soda 
can. There is often, perhaps usually, some additional constraint on another response y2. 
The chip should be stable enough, and the can should be able to withstand a specified 
internal pressure. 

Standard optimization methods, such as quasi-Newton or conjugate gradients (see 
for example Gill et al., 1981) can be unsatisfactory for computer experiments. These 
methods usually require first and possibly second derivatives of f ,  and these may be 
difficult to obtain or expensive to run. The standard methods also depend strongly on 
having good starting values. Computer experimentation as described below is useful 
in the early stages of optimization where one is searching for a suitable starting value. 
It is also useful when searching for several widely separated regions of the predictor 
space that might all have good Y values. Given a good starting value, the standard 
methods will be superior if one needs to locate the optimum precisely. 

2.2. Visualization 

As Diaconis (1988) points out, being able to compute a function f at any given value 
X does not necessarily imply that one "understands" the function. One might not 
know whether the function is continuous or bounded or unimodal, where its optimum 
is or whether it has asymptotes. 

Computer experimentation can serve as a primitive way to visualize functions. One 
evaluates f at a well chosen set of points x l , . . . ,  xn obtaining responses Yl , . . . ,  Yn. 
Then data visualization methods may be applied to the p + q dimensional points 
(x i ,y i ) ,  i = 1 , . . .  ,n.  Plotting the responses versus the input variables (there are 
pq such plots) identifies strong dependencies, and plotting residuals from a fit can 
show weaker dependencies. Selecting the points with desirable values of Y and then 
producing histograms and plots of the corresponding X values can be used to identify 
the most promising subregion of X values. Sharifzadeh et al. (1989) took this approach 
to find that increasing a certain implant dose helped to make two different threshold 
voltages near their common targets and nearly equal (as they should have been). 
Similar exploration can identify which input combinations are likely to crash the 
simulator. 

Roosen (1995) has used computer experiment designs for the purpose of visualizing 
functions fit to data. 

2.3. Approximation 

The original program f may be exceedingly expensive to evaluate. It may however be 
possible to approximate f by some very simple function ] ,  the approximation holding 
adequately in a region of interest, though not necessarily over the whole domain of f .  
If the function f is fast to evaluate, as for instance a polynomial, neural network or 
a MARS model (see Friedman, 1991), then it may be feasible to make millions of ] 
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evaluations. This makes possible brute force approximations for the other problems. 
For example, optimization could be approached by finding the best value of f (x )  over 
a million random runs x. 

Approximation by computer experiments involves choosing where to gather 
(xi, f (x i))  pairs, how to construct an approximation based on them and how to assess 
the accuracy of this approximation. 

2.4. Integration 

Suppose that X* is the target value of the input vector, but in the system being 
modeled the actual value of X will be random with a distribution d F  that hopefully 
is concentrated near X*. Then one is naturally interested in f f(X) dF, the average 
value of Y over this distribution. Similarly the variance of Y and the probability 
that Y exceeds some threshold can be expressed in terms of integrals. This sort of 
calculation is of interest to researchers studying nuclear safety. McKay (1995) surveys 
this literature. 

Integration and optimization goals can appear together in the same problem. In 
robust design problems (Phadke, 1988), one might seek the value X0 that minimizes 
the variance of Y as X varies randomly in a neighborhood of X0. 

3. Approaches to computer experiments 

There are two main statistical approaches to computer experiments, one based on 
Bayesian statistics and a frequentist one based on sampling techniques. It seems to 
be essential to introduce randomness in one or other of these ways, especially for the 
problem of gauging how much an estimate ](Xo) might differ from the true value 
f (Xo).  

In the Bayesian framework, surveyed below in Sections 4 and 5, f is a realization 
of a random process. One sets a prior distribution on the space of all functions from 
[0, 1] p to R q. Given the values Yi = f(xi) ,  i = 1 , . . . , n ,  one forms a posterior 
distribution on f or at least on certain aspects of it such as f(xo). This approach is 
extremely elegant. The prior distribution is usually taken to be Gaussian so that any 
finite list of function values has a multivariate normal distribution. Then the posterior 
distribution, given observed function values is also multivariate normal. The posterior 
mean interpolates the observed values and the posterior variance may be used to 
give 95% posterior probability intervals. The method extends naturally to incorporate 
measurement and prediction of derivatives, partial derivatives and definite integrals 
of f .  

The Bayesian framework is well developed as evidenced by all the work cited 
below in Sections 4 and 5. But, as is common with Bayesian methods there may 
be difficulty in finding an appropriate prior distribution. The simulator output might 
not have as many derivatives as the underlying physical reality, and assuming too 
much smoothness for the function can lead to Gibbs-effect overshoots. A numerical 
difficulty also arises: the Bayesian approach requires solving n linear equations in 
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n unknowns when there are n data points. The effort involved grows as n 3 while 
the effort in computing f(X1),..., f(Xn) grows proportionally to n. Inevitably this 
limits the size of problems that can be addressed. For example, suppose that one 
spends an hour computing f ( x l ) , . . . ,  f(xn) and then one minute solving the linear 
equations. If  one then finds it necessary to run 24 times as many function evaluations, 
the time to compute the f(xi) grows from an hour to a day, while the time to solve 
the linear equations grows from one minute to over nine and a half days. 

These difficulties with the Bayesian approach motivate a search for an alternative. 
The frequentist approach, surveyed in Sections 6 and 7, introduces randomness by tak- 
ing function values x l , . . . ,  xn that are partially determined by pseudo-random number 
generators. Then this randomness in the xi is propagated through to randomness in 
f(xo). This approach allows one to consider f to be deterministic, and in particular 
to avoid having to specify a distribution for f .  The material given there expands on 
a proposal of Owen (1992a). There is still much more to be done. 

4. Bayesian prediction and inference 

A Bayesian approach to modeling simulator output (Sacks et al., 1989a, b; Welch 
et al., 1990) can be based on a spatial model adapted from the geo-statistical Kriging 
model (Matheron, 1963; Journel and Huibregts, 1978; Cressie, 1986, 1993; Ripley, 
1981). This approach treats the bias, or systematic departure of the response surface 
from a linear model, as the realization of a stationary random function. This model has 
exact predictions at the observed responses and predicts with increasing error variance 
as the prediction point moves away from all the design points. 

This section introduces the Kriging (or Bayesian) approach to modeling the response 
surfaces of computer experiments. Several correlation families are discussed as well 
as their effect on prediction and error analysis. Additionally, extensions to this model 
are presented that allow the use and the modeling of gradient information. 

4.1. The Kriging model 

The Kriging approach uses a two component model. The first component consists of 
a general linear model while the second (or lack of fit) component is treated as the 
realization of a stationary Gaussian random function. Define S = [0, 1] p to be the 
design space and let x c S be a scaled p-dimensional vector of input values. The 
Kriging approach models the associated response as 

k 

= Zjhj( ) + 
j = l  

(2) 

where the hj ' s  are known fixed functions, the /3j's are unknown coefficients to be 
estimated and Z(x) is a stationary Gaussian random function with E[Z(x)] = 0 and 
covariance 

Cov[Z(x ), =  2n( j - (3) 



266 J. R. Koehler and A. B. Owen 

For any point x c S, the simulator output Y(x)  at that point has the Gaussian 
distribution with mean ~ / 3 j  hj (x) and variance ~r 2. The linear component models the 
drift in the response, while the systematic lack-of-fit (or bias) is modeled by the second 
component. The smoothness and other properties of Z(.) are controlled by R(.). 

Let design D -- {xi, i = 1 , . . . ,  n} C S yield responses y)) = {y(x l ) , . . . ,  y(xn)} 
and consider a linear predictor 

~(xo) - - ; ( : co )y .  

of an unobserved point x0. The Kriging approach of Matheron (1963) treats if(x0) as 
a random variable by substituting liD for YD where 

Y~ = ( Y ( x l ) , . . . ,  Y(xn)) .  

The best linear unbiased predictor (BLUP) finds the A(x0) that minimizes 

MSE[Y(xo)] = E[A'YD -- Y(xo)J 2 

subject to the unbiasedness condition 

E[AtYD] = E[Y(xo)]. 

The BLUP of Y(xo) is given by 

where 

and 

9 ( x o )  ' ^ ' - '  = h (xo)/3 + VxoVD (YD -- HDfl) 

h'(xo) = (hi ( x o ) ,  • • • ,  hk(xo)), 

( H~  )~j = hj(  :Cd, 

(Y~)~j = Cov[Z(:Cd, Z(:Cj)], 

V'o = (Cov[Z(:Co), Z(:C~)],..., Cov[Z(xo), Z(:C~)]) 

(4) 

~ =  [HtV-1H]-I H t V - 1 y  D 

is the generalized least squares estimate of/3. The mean square error of Y(x0) is 

The first component of equation (4) is the generalized least squares prediction 
at point :Co given the design covariance matrix VD, while the second component 
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Fig. 1. A prediction example with n = 3. 

"pulls" the generalized least squares response surface through the observed data points. 
The elasticity of the response surface "pull" is solely determined by the correlation 
function R(.). The predictions at the design points are exactly the corresponding 
observations, and the mean square error equals zero. As a prediction point x0 moves 
away from all of the design points, the second component of equation (4) goes to 
zero, yielding the generalized least squares prediction, while the mean square error at 

that point goes to 0 -2 q- h'(xo) [H'VDIH]-1 h(xo). In fact, these results are true in 
the wide sense if the Gaussian assumption is removed. 

As an example, consider an experiment where n -~ 3, p = 1, a 2 = .05, R(d) = 
exp( -20d  2) and D = {.3, .5, .8}. The response of the unknown function at the 
design is y~ = (.7, .3, .5). The dashed line of Figure 1 is the generalized least 

squares prediction surface for h(.) = 1 where fl = .524. The effect of the second 
component of equation (4) is to pull the dashed line through the observed design 
points as shown by the solid line. The shape of the surface or the amount of elasticity 

! - -1  of the "pull" is determined by the vector v=V o as a function of x and therefore 

completely determined by R(.). The dotted lines are +2ffMSE[Y(x)] or 95% is 
pointwise confidence envelopes around the prediction surface. The interpretation of 
these pointwise confidence envelopes is that for any point x0, if the unknown function 
is truly generated by a random function with constant mean and correlation function 
R(d) = exp(-20d2), then approximately 95% of the sample paths that go through 
the observed design points would be between these dotted lines at x0. The predictions 
and confidence intervals can be very different for different a 2 and R(-). The effect of 
different correlation functions is discussed in Section 4.3. Clearly, the true function is 
not "generated" stochastically. The above model is used for prediction and to quantify 
the uncertainty of the prediction. This naturally leads to a Bayesian interpretation of 
this methodology. 
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4.2. A fully Bayesian interpretation 

An alternative to the above interpretation of equation (2) is the fully Bayesian interpre- 
tation which uses the model as a way of quantifying the uncertainty of the unknown 
function. The Bayesian approach (Currin et al., 1991; O'Hagan, 1989) uses the same 
model but has a different interpretation of the/3j's. Here the/3j's are random vari- 
ables with prior distribution 7rj. The effect of these prior distributions is to quantify 
the prior belief of the unknown function or to put a prior distribution on a large class 
of functions ~. Hence hopefully the true function y(.) E ~. The mixed convolution of 
the r 9,s and rr(Z) yield the prior distribution II(G) for subsets of functions G C ~. 

Once the data YD = YD has been observed, the posterior distribution 17(G [ YD) 
is calculated. The mean 

~(~o) =/g(xo)ZZ(glYD = YO)dg 

and variance 

var(P(x0) I YD = YD) = f (9(XO) - r(x0))2/-/(g I Y D  = YD) dg 

of the posterior distribution at each input point are then used as the predictor and 
measure of error, respectively, at that point. In general, the Kriging and Bayesian 
approaches will lead to different estimators. However, if the prior distribution of Z(.) 
is Gaussian and if the prior distribution of the/3j's is diffuse, then the two approaches 
yield identical estimators. 

As an example, consider the case where the prior distribution of the vector of/3's 
is 

/3 ~ Nk(b, T2Z) 

and the prior distribution of Z(.) is a stationary Gaussian distribution with expected 
value zero and covariance function given by equation (3). After the simulator function 
has been evaluated at the experimental design, the posterior distribution of/3 is 

/31Y~ ~ Nk(a,~) 

where 

~ =  ~ [HtVD1yD + r-2Z-'b] 

and 

= [H,V~IH + ~-2~-1]-, 

and the posterior distribution of Y(xo) is 

~,~ t ~ (72 t V - 1  c t  Y(xo) [ YD N(v~o VD'YD + %off, - %0 D V~:o + ~o 2]C~o) 
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where 

/ 
= h' - V~oVD1H.'"- Cm o 

Hence the posterior distribution is still Gaussian but it is no longer stationary. Now if 
-r 2 ~ oe then 

A 
/3~/3, 

-+ [H'VD 1 H] -1 

and hence the posterior variance of Y(xo )  is 

Var(V(x0) lV/~) ~2 , -1 , [H,V~,H]-I "= - -  Vxo V D Vxo -]- Cxo Cxo 

~ ' v - '  [H'V~'H]-' ~- - -  Vxo D Vxo + h t h 

-- 2h ! [HtV~ I H] -I HtV~Ivxo 

+ ~o -I H [H'Vp H] -~ H'Vp ~o 

: ~ - [ -  h' l i t ' v ;  ~]-' h 

J- 2h ! [HtVD 1 H ]  -1  gtVDlVxo] 

- [[V'~o~rV-'D -- VD'II  [H'VD lit] - '  H'VD')V~o] 

( )-'( ) : a a - (h'(xo),V'o) 0 H '  D h(xo) 
HD VD Vxo 

which is the same variance as the BLUP in the Kriging approach. Therefore, if Z(.) 
has a Gaussian prior distribution and if the/3's have a diffuse prior, the Bayesian and 
the Kriging approaches yield identical estimators. 

Currin et al. (1991) provide a more in depth discussion of the Bayesian approach 
for the model with a fixed mean (h - 1). O'Hagan (1989) discusses Bayes Linear 
Estimators (BLE) and their connection to equations (2) and (4). The Bayesian ap- 
proach, which uses random functions as a method of quantifying the uncertainty of 
the unknown simulator function Y(.), is more subjective than the Kriging or frequen- 
tist approach. While both approaches require prior knowledge or an objective method 
of estimating the covariance function, the Bayesian approach additionally requires 
knowledge of parameters of the prior distribution of/3 (b and Z). For this reason, 
the Kriging results and Bayesian approach with diffuse prior distributions and the 
Gaussian assumption are widely used in computer experiments. 
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Fig. 2. The effects of 0 on prediction. 

4.3. Correlation functions 

As discussed above, the selection of R(.) plays a crucial role in constructing designs 
and in the predictive process. Consider the example of Section 4.1 where n = 3, 
p = 1, D = {.3, .5, .8), y~ = {.7, .3, .5}, R(d) = exp{-0d  2} and 0 = 20. Figure 

2(a) shows the effect on prediction for 0 = 2. Now/3- -  1.3 and the surface elasticity 
is very low. The predictions outside of the design are actually higher than the observed 
surface since the convex nature of the observed response indicate that the design range 
contains a local minimum for the total process. Eventually, the extrapolations would 
return to the value of/3.  Additionally, the 95% pointwise confidence intervals are 
much narrower within the range of the design than in Figure 1. Figure 2(b) displays 
the prediction when 0 = 100. Here fl = .5 and the surface elasticity is very high. 
The prediction line is typically .5 with smooth curves pulling the surface through the 
design points. The 95% pointwise confidence intervals are wider than before. 

This section presents some simplifying restrictions on R(.) and four families of 
univariate correlation functions used in generating the simplified correlation functions. 
Examples of realization of these families will be shown to explain the effect on 
prediction by varying the parameter of these families. Furthermore, the maximum 
likelihood method for estimating the parameters of a correlation family along with a 
technique for implementation will be discussed in Section 4.4. 

4.3.1. Restrictions on R(.) 
Any positive definite function R with R(x, x) = 1 could be used as a correlation 
function, but for simplicity, it is common to restrict R(.) such that for any xl, x2 E S 

R ( x l ,  z2) = R ( x l  - ~2) 



so that the process Z(.) is stationary. Some types of nonstationary behavior in the mean 
function of Y(.) can be modeled by the linear term in equation (2). A further restriction 
makes the correlation function depend only on the magnitude of the distance. 

R(xl, x2) = R(IXl - x2l). 

p 

j= l  

In higher dimensions (p ~> 2) a product correlation function, 

o 

>" "7 

is often used for mathematical convenience. That is, R(.) is a product of univariate 
correlation functions and, hence, only univariate correlation functions are of inter- 
est. The product correlation function has been used for prediction in spatial settings 
(Ylvisaher, 1975; Curin et al., 1991; Sacks et al., 1989a, b; Welch et al., 1990, 1992). 

Several choices for the factors in the product correlation function are outlined below. 

tq 
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Fig. 3. Realizations for the cubic correlation function (p, 7) ----- (a) (.15, .03), (b) (.45, .20), (c) (.70, .50), 
and (d) (.95, .90). 
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4.3.2. Cubic 
The (univariate) cubic correlation family is parameterized by p E [0, 1] and 7 E [0, 1] 
and is given for d E [0, 1] by 

- ( 1  - p ) ( 1  - 
R(d)  = 1 3(1 p) d2 + id13 

2 + 7  2 + 7  

where p and 7 are restricted by 

5-) '2 + 87 - 1 
P >  , 7 2 + 4 7 + 7  

to ensure that the function is positive definite (see Mitchell et al., 1990). Here 
p -- corr(Y(0),Y(1)) is the correlation between endpoint observations and 7 = 
corr(Y'(0), Y'(1)) is the correlation between endpoints of the derivative process. The 
cubic correlation function implies that the derivative process has a linear correlation 
process with parameter "7. 

A prediction model in one dimension for this family is a cubic spline interpolator. 
In two dimensions, when the correlation is a product of univariate cubic correlation 
functions the predictions are piece-wise cubic in each variable. 

Processes generated with the cubic correlation function are once mean square dif- 
ferentiable. Figure 3 shows several realizations of processes with the cubic correlation 
function and parameter pairs (.15, .03), (.45, .20), (.70, .50), (.95, .9). Notice that 
the realizations are quite smooth and almost linear for parameter pair (.95, .90). 

4.3.3. Exponential 
The (univariate) exponential correlation family is parameterized by 0 E (0, o~) and is 
given by 

R(d)  = exp(-01dl) 

for d C [0, 1]. Processes with the exponential correlation function are Ornstein- 
Uhlenbeck processes (Parzen, 1962). The exponential correlation function is not mean 
square differentiable. 

Figure 4 presents several realizations of one dimensional processes with the expo- 
nential correlation function and 0 = 0.5, 2.0, 5.0, 20. Figure 4(a) is for 0 = 0.5 
and these realizations have very small global trends but much local variation. Figure 
4(d) is for 0 = 20, and is very jumpy. Mitchell et al. (1990) also found necessary and 
sufficient conditions on the correlation function so that the derivative process has an 
exponential correlation function. These are called smoothed exponential correlation 
functions. 

4.3.4. Gaussian 
Sacks et al. (1989b) generalized the exponential correlation function by using 

R(d)  = exp(-Oidl q) 
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Fig. 4. Realizations for the exponential correlation function with 0 = (a) 0.5, (b) 2.0, (c) 5.0, and (d) 20.0. 

where 0 < q ~< 2 and 0 E (0, c~). Taking q = 1 recovers the exponential correlation 
function. As q increases, this correlation function produces smoother realizations. 
However,  as long as q < 2, these processes are not mean square differentiable. 

The Gaussian correlation function is the case q = 2 and the associated processes are 
infinitely mean square differentiable. In the Bayesian interpretation, this correlation 
function puts all o f  the prior mass on analytic functions (Currin et al., 1991). This 
correlation function is appropriate when the simulator output is known to be ana- 
lytic. Figure 5 displays several realizations for various 0 for the Gaussian correlation 
function. These realizations are very smooth, even when 0 = 50. 

4.3.5. Mat&n 
All of  the univariate correlation functions described above are either zero, once or 
infinitely many times mean square differentiable. Stein (1989) recommends a more 
flexible family o f  correlation function (Matrrn, 1947; Yaglom, 1987). The Matrrn 
correlation function is parameterized by 0 E (0, c~) and v E (--1,  c~) and is given by 

R(d)= (Oldl) " K ,(Oldl) 
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Fig. 5. Realizations for the Gaussian correlation function with 0 = (a) 0.5, (b) 2.0, (c) 10.0, and (d) 50.0. 

where Kv(.)  is a modified Bessel function of order v. The associated process will be 
m times differentiable if and only if v > m. Hence, the amount of differentiability 
can be controlled by v while 0 controls the range of the correlations. This correlation 
family is more flexible than the other correlation families described above due to the 
control of the differentiability of the predictive surface. 

Figure 6 displays several realizations of processes with the Mat6rn correlation func- 
tion with v = 2.5 and various values of 0. For small values of 0, the realizations are 
very smooth and flat while the realizations are erratic fo r large values of 0. 

4 . 3 . 6 .  S u m m a r y  

The correlation functions described above have been applied in computer experiments. 
Software for predicting with them is described in Koehler (1990). The cubic corre- 
lation function yields predictions that are cubic splines. The exponential predictions 
are non-differentiable while the Gaussian predictions are infinitely differentiable. The 
Mat6rn correlation function is the most flexible since the degree of differentiability 
and the smoothness of the predictions can be controlled. In general, enough prior 
information to fix the parameters of a particular correlation family and ~r 2 will not be 
available. A pure Bayesian approach would place a prior distribution on the parame- 
te rs  o f  a family and use the posterior-distribution of the parameter in the estimation 
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Fig. 6. Realizations for the Mat6rn correlation function with v = 2.5 and 0 = (a) 2.0, (b) 4.0, (c) 10.0, and 
(d) 25.0. 

process. Alternatively, an empirical Bayes approach which uses the data to estimate 
the parameters of  a correlation family and ~r 2 is often used. The maximum likelihood 
estimation procedure will be presented and discussed in the next section. 

4.4. Correlation function estimation - maximum likelihood 

The previous subsections of  this section presented the Kriging model, and families of  
correlation functions. The families of  correlations are all parameterized by one or two 
parameters which control the range of  correlation and the smoothness of  the corre- 
sponding processes. This model assumes that ~r z, the family and parameters of  R(.)  
are known. In general, these values are not completely known a priori. The appro- 
priate correlation family might be known from the simulator's designers experience 
regarding the smoothness of  the function. Also, ranges for ~r 2 and the parameters 
of  R(-) might be known if a similar computer experiment has been performed. A 
pure Bayesian approach is to quantify this knowledge into a prior distribution on ~r 2 
and R(.). How to distribute a non-informative prior across the different correlation 
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families and within each family is unclear. Furthermore, the calculation of the posterior 
distribution is generally intractable. 

An alternative and more objective method of estimating these parameters is an 
empirical Bayes approach which finds the parameters which are most consistent with 
the observed data. This section presents the maximum likelihood method for estimating 
fl, ~r 2 and the parameters of a fixed correlation family when the underlying distribution 
of Z(.) is Gaussian. The best parameter set from each correlation family can be 
evaluated to find the overall "best" a 2 and R(.). 

Consider the case where the distribution of Z(.) is Gaussian. Then the distribution 
for the response at the n design points Yo is multinormal and the likelihood is given 
by 

lik (/3, a 2, R I Yz)) = (27r)-n/2a-'~ IRD1-1/2 

× e x p { - ~ - ~ ( Y D - H I 3 ) ' R D I ( Y D - H P ) }  

where .RD is the design correlation matrix. The log likelihood is 

Hence 

n in (27r) n 1 Iml(/3,0"2,RD IYD)=--'~ --"~ In (a 2) -- ~ ln  (IRD[) 

(Yo - HZ)'R  1 - H Z ) .  (5) 

f fml  ~ n 
(7) 

Olml(fl, cr2, R [ Yo) 1 
Off = - - ~  (H'RD1YD -- H'RD1Hfl) 

which when set to zero yields the maximum likelihood estimate of/3 that is the same 
as the generalized least squares estimate, 

flint = [H'RD' H]-1 H, RDIYD. (6) 

Similarly, 

alml(~'Cr2'RDi~cr2 [ YD) = --~a + ~1 (YD -- H~3)tRDI(yD - Hi3) 

which when set to zero yields the maximum likelihood estimate of 0 .2 
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Therefore, if RD is known, the maximum likelihood estimates of/3 and ~r 2 are easily 
calculated. However, if R(-) is parameterized by 0 -- (01, . . . ,  0s), 

Olmt(/3'cr2'RUOOi I YD) 21 OlRDlooi 21i(yD~ -- H/3) taro1 H /3) 

1 ITf~RDAORD~ 
i 

r 10RD ~-1/~s 1 (YD-H/3) R D ~ 0  [~D--Hfl) (8) 

does not generally yield an analytic solution for 0 when set to zero for i = 1 , . . . ,  s. 
(Commonly s = p or 2p, but this need not be assumed.) 

An alternative method to estimate/9 is to use a nonlinear optimization routine using 
equation (5) as the function to be optimized. For a given value of 0, estimates of/3 
and cr 2 are calculated using equations (6) and (7), respectively. Next, equation (8) is 
used in calculating the partial derivatives of the objective function. See Mardia and 
Marshall (1984) for an overview of the maximum likelihood procedure. 

4.5. Estimating and using derivatives 
In the manufacturing sciences, deterministic simulators help describe the relationships 
between product design, and the manufacturing process to the product's final charac- 
teristics. This allows the product to be designed and manufactured efficiently. Equally 
important are the effects of uncontrollable variation in the manufacturing parameters 
to the end product. If the product's characteristics are sensitive to slight variations in 
the manufacturing process, the yield, or percentage of marketable units produced, may 
decrease. Furthermore, understanding the sensitivities of the product's characteristics 
can help design more reliable products and increase the overall quality of the product. 

Many simulators need to solve differential equations and can provide the gradient of 
the response at a design point with little or no additional computational cost. However, 
some simulators require that the gradient be approximated by a difference equation. 
Then the cost of finding a directional derivative at a point is equal to evaluating an 
additional point while approximating the total gradient requires p additional runs. 

Consider Figure 7 for an example in p = 1 showing the effects of including gradient 
information on prediction. The solid lines, Y in Figure 7(a) and Y' in Figure 7(b), 
are the true function and it's derivative, respectively, while the long dashed lines are 
Kriging predictors Y3 and ~ '  based on n = 3 observations. As expected Y3 goes 

through the design points, D = {.2, .5, .8}, but Y3' is a poor predictor of Y'. The 
short dashed lines are the n = 3 predictors with derivative information Y3, and Y3t,. 
Notice that this predictor now matches Y' and Y at D and the interpolations are over 
all much better. The addition of gradient information substantially improves the fits 
of both Y and Y~. The dotted lines are the n = 6 predictors Y6 and Y6' and is a fairer 

comparison if the derivative costs are equal to the response cost. The predictor Y6 is 
a little better on the interior of S but Yr' is worse at x --- 0 than Y3',. 
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Fig. 7. (a) An example of a response (Y) and three predictors (Ya, Y3, ,Y6). (b) An example of a derivative 
(Y') and three predictors (Y3 t, Y3~,, Y6~). 

The Kriging m e t h o d o l o g y  easi ly  extends to m o d e l  gradients. To see  this for p = 1, 
let E[Y( . ) ]  = # and d = t2 - t l ,  then 

Coy  [ Y ( t l ) ,  Y'(t2)] = E [Y(t l )Y'( t2)]  - E  [ Y ( t l ) ]  E [Y'(t2)] . 

Now due to the stationarity of Y(.), E[Y'(.)] = 0 and 

Coy [Y(h) ,  Y'(t2)] = E [Y(ta)Y'(ta)] 

= E [ Y ( t l ) l i m Y ( t 2 + ~  - Y ( t 2 )  

= E [lim Y(h)Y(t2 + ~) - Y(h)Y(tz)] 
k6~O 6 

= cr 2 l im R(d + 6) - R(d) 
&~o 6 

= a2R ' (d) 



for differentiable R(.). Similarly, 

and 
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Cov [Y' (tl), Y(t2)] ---- -a2R '(d) 

Cov [Y'(t ,) ,  Y/(t2) ] = -o-2Rtt(d) 

For more general p and for higher derivatives, following Morris et al. (1993) let 

y(a, ..... ~P)(t) = a~ atl~,)...at(a,)Y(t) 

p where a = ~ j = l  aj  and t j  is the j th  component of t. Then E[Y( a' ..... ap)] = 0 and 

p 
CoY [y(al ..... ap)(tl),y(bl ..... bp)(t2)] ~---(--1)a(T2 H RSaJ-{"bJ)(t2j- tlj) 

j=l 

for R(d) P = rIj=l Rj(dj).  
Furthermore, for directional derivatives, let Y~(t) be the directional derivative of 

Y(t) in the direction u = ( "1 , . . . ,  "p)', ~P=I  u2 = 1, 

L ~ Y ( t )  u Y'(t) = ~ j = (vY(t ) , . ) .  
j=l 

Then E[Yd(t)] = 0 and for d = t - s, 

Coy [Y(s), Y~(t)] = E [Y(s)Y~(t)] 
P [ a y ( t ) . ]  

= E E  Y(s)---~--j ~j 
j=l 

" [ ~r(t)] =~Cov r(~),--~, j .j 
j=l 

a2 X-~ O/~(d) 

= ~2(R(e),-) (9) 

where/~(d) = [OR(d)/Odl,..., OR(d)/Odp]'. Similarly, 

Coy [r~'(~), Y(t)] = - ~ ( R ( ~ ) , . )  (1o) 
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Cov Iv"  (~), Y" (t)] = -~, ' , /~(d) ,~,  (11) 

0ZR(d) 
(/~(d))~, = Od~Od, 

is the matrix of 2nd partial derivatives evaluated at d. 
The Kriging methodology is modified to model gradient information by letting 

YD [y(Xl ) , .  , y(Xn), ytUll (Xl), ), ' 
, = . .  y , ( ~ ,  . . . , y , ° ~ ( ~ , ) ] r  

where uit is the direction of the lth directional derivative at xi. Also let 

,*  = ( , , , , . . . , # , 0 , 0 , . . .  ,0) '  

with n Us and m n  0s and let V* be the combined covariance matrix for the design 
responses and derivatives with the entries as prescribed above (equations (9), (10), 
and (11)). Then 

t* .--1 
2(~0) = ~ + v~0v (v~ - ~*) 

9"(x0) '* *-' = v~0,.v ( ~ , -  ~*) 

and 

'* = C o v [ r ' ( x 0 ) , r 3 ] .  '* = Cov[Y(x0), ¥~], and v~0,, where v~0 
Notice that once differentiable random functions need twice differentiable corre- 

lation functions. One problem with using the total gradient information is the rapid 
increase in the covariance matrix. For each additional design point, V* increases by 
p + 1 rows and columns. Fortunately, these new rows and columns generally have 
lower correlations than the corresponding rows and columns for an equal number of 
response. The inversion of V* is more computationally stable than for an equally 
sized VD. More research is needed to provide general guidelines for using gradient 
information efficiently. 

4.6. Complexity o f  computer experiments 

Recent progress in complexity theory, a branch of theoretical computer science, has 
shed some light on computer experiments. The dissertation of Ritter (1995) contains an 
excellent summary of this area. Consider the case where Y ( x )  = Z (x ) ,  that is where 
there is no regression function. If for r >/ 1 all of the rrth order partial derivatives of 
Z ( x )  exist in the mean square sense and obey a Holder condition of order/3, then it 
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is possible (see Ritter et al., 1993) to approximate Z(x) with an L z error that decays 
as O(n-(r+~)/P). This error is a root mean square average over randomly generated 
functions Z. 

When the covariance has a tensor product form, like those considered here, one can 
do even better. Ritter et al. (1995) show that the error rate for approximation in this case 
is n-r-1/Z(logn) (p-l)(r+l) for products of covariances satisfying Sacks-Ylvisaker 
conditions of order r />  0. When Z is a p dimensional Wiener sheet process, for which 
r = 0, the result is n-1/Z(logn) (p-l) which was first established by Wozniakowski 
(1991). 

In the general case, the rate for integration is n -I/2 times the rate for approxi- 
mation. A theorem of Wasilkowski (1994) shows that a rate n -d for approximation 
can usually be turned into a ra te  n - d - l ~ 2  for integration by the simple device of 
fitting an approximation with n/2 function evaluations, integrating the approxima- 
tion, and then adjusting the result by the average approximation error on n/2 more 
Monte Carlo function evaluations. For tensor product kernels the rate for integration is 
n - r  - 1 (log n) (P- 1)/2 (see Paskov, 1993), which has a more favorable power of log n 
than would arise via Wasilkowski's theorem. 

The fact that much better rates are possible under tensor product models than for 
general covariances suggests that the tensor product assumption may be a very strong 
one. The tensor product assumption is at least strong enough that under it, there is no 
average case curse of dimensionality for approximation. 

5. Bayesian designs 

Selecting an experimental design, D, is a key issue in building an efficient and infor- 
mative Kriging model. Since there is no random error in this model, we wish to find 
designs that minimize squared-bias. While some experimental design theories (Box 
and Draper, 1959; Steinberg, 1985) do investigate the case where bias rather than 
solely variance plays a crucial role in the error of the fitted model, how good these 
designs are for the pure bias problem of computer experiments is unclear. Box and 
Draper (1959) studied the effect of scaling factorial designs by using a first order 
polynomial model when the true function is a quadratic polynomial. Box and Draper 
(1983) extended the results to using a quadratic polynomial model when the true re- 
sponse surface is a cubic polynomial. They found that mean squared-error optimal 
designs are close to bias optimal designs. Steinberg (1985) extended these ideas fur- 
ther by using a prior model proposed by Young (1977) that puts prior distributions 
on the coefficients of a sufficiently large polynomial. However, model (2) is more 
flexible than high ordered polynomials and therefore better designs are needed. 

This section introduces four design optimality criteria for use with computer exper- 
iments: entropy, mean squared-error, maximin and minimax designs. Entropy designs 
maximize the amount of information expected for the design while mean squared-error 
designs minimize the expected mean squared-error. Both these designs require a priori 
knowledge of the correlation function R(.). The design criteria described below are 
for the case of fixed design size n. Simple sequential designs, where the location of 
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Fig. 8(a). Maximum entropy designs for p = 2, n = 1-16, and the Gaussian correlation function with 
0 = (0.5, 0.5). 

the r~th design point is determined after the first n -  1 points have been evaluated, will 
not be presented due to their tendencies to replicate (Sacks et al., 1989b). However, 
sequential block strategies could be used where the above designs could be used as 
starting blocks. Depending upon the ultimate goal of the computer experiment, the 
first design block might be utilized to refine the design and reduce the design space. 

5.1. Entropy designs 

Lindley (1956) introduced a measure, based upon Shannon's entropy (Shannon, 1948), 
of the amount of information provided by an experiment. This Bayesian measure 
uses the expected reduction in entropy as a design criterion. This criterion has been 
used in Box and Hill (1967) and Borth (1975) for model discrimination. Shewry and 
Wynn (1987) showed that, if the design space is discrete (i.e., a lattice in [0, 1Iv), 
then minimizing the expected posterior entropy is equivalent to maximizing the prior 
entropy. 
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Fig. 8(b). Maximum entropy designs for p = 2, n = 1-16, and the Gaussian correlation function with 
0 = (2,  2) .  

DEFINITION 1. A design D E  is a Maximum Entropy Design if 

Ey [-lnP(YD~)] = m~nEv [ - l n P ( Y D ) ]  

where P(YD) is the density of YD. 

In the Gaussian case, this is equivalent to finding a design that maximizes the 
determinant of  the variance of YD. In the Gaussian prior case, where/3 --~ Nk (b, r 2 S ) ,  
the determinant of  the unconditioned covariance matrix is 

i v  D + r 2 H S H ,  I = VD + T2H~H ' H 
0 I 

=( ' °) 
-T2ZH t T2SH , I 
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Fig. 8(c). Maximum entropy designs for p : 2, n : 1-16, and the Gaussian correlation function with 
0 = (10, 10). 

VD H 
-T2ZH ' I 

I 0 H 

I -~-21JH' I 

_vD H 1 
- 0 T2ZH'V~IH+I 

= lVol l~2rH'Vp H + 1 I 

: IVDIIH'V~ 1H + T - z S - ' l l ~  z~[.  

Since ~_2S is fixed, the maximum entropy criterion is equivalent to finding the design 
D E  that maximizes  

Iv~l I ~ ' v ~ l H  + ~-2~-11 . 
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If the prior distribution is diffuse, T 2 ~ ee, the maximum entropy criterion is equiv- 
alent to 

IVDI IH'vD ' H I 

and if/3 is treated as fixed, then the maximum entropy criterion is equivalent to IVz)I. 
Shewry and Wynn (1987, 1988) applied this measure in designs for spatial models. 

Currin et al. (1991) and Mitchell and Scott (1987) have applied the entropy measure to 
finding designs for computer experiments. By this measure, the amount of information 
in experimental design is dependent on the prior knowledge of Z(.) through R(.). 
In general, R(.) will not be known a priori. Additionally, these optimal designs are 
difficult to construct due to the required n xp  dimensional optimization of the n design 
point locations. Currin et al. (1991) describe an algorithm adopted from DETMAX 
(Mitchell, 1974) which successively removes and adds points to improve the design. 

Figure 8(a) shows the optimal entropy designs for p = 2, n = 1 , . . . ,  16, R(d) = 
exp{-0  ~ d~} where 0 = 0.5, 2, 10. The entropy designs tend to spread the points 
out in the plane and favor the edge of the design space over the interior. For example, 
the n = 16 designs displayed in Figure 8(a) have 12 points on the edge and only 4 
points in the interior. Furthermore, most of the designs are similar across the different 
correlation functions although there are some differences. Generally, the ratio of the 
edge to interior points are constant. The entropy criterion appears to be insensitive 
to changes in the location of the interior points. Johnson et al. (1990) indicate that 
entropy designs for extremely "weak" correlation functions are in a limiting sense 
maximin designs (see Section 5.3). 

5.2. Mean squared-error designs 

Box and Draper (1959) proposed minimizing the normalized integrated mean squared- 
error (IMSE) of Y(x) over [0, 1] v. Welch (1983) extended this measure to the case 
when the bias is more complicated. Sacks and Schiller (1988) and Sacks et al. (1989a) 
discuss in more detail IMSE designs for computer experiments, 

DEFINITION 2. A design D1 is an Integrated Mean Squared-Error (IMSE) design if 

where 

J(DI) = n~n J(D) 

1 rio E[Y(x) - Y(x)] 2 dx. J ( Z ) )  = 

J(D) is dependent on R(.) through Y(x). For any design, J(D) can be expressed as 

{I 1} 0 H' "h(x)h'(x) h(x)v~ 
J (D)  = a 2 - trace H lid v~h'(x) v~v~ dx 
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and, as pointed out by Sacks et al. (1989a), if the elements of  h(x) and V= are products 
of  functions of a single input variable, the multidimensional integral simplifies to prod- 
ucts of  one-dimensional integrals. As in the entropy design criterion, the minimization 
of J ( D )  is a optimization in n x p dimensions and is also dependent on R(.). 

Sacks and Schiller (1988) describe the use of a simulated annealing method for con- 
structing IMSE designs for bounded and discrete design spaces. Sacks et al. (1989b) 
use a quasi-Newton optimizer on a Cray X-MP48. They found that optimizing a 
n = 16, p = 6 design with 01 . . . . .  06 = 2 took 11 minutes. The PACE program 
(Koehler, 1990) uses the optimization program NPSOL (Gill et al., 1986) to solve the 
IMSE optimization for a continuous design space. For n = 16, p = 6, this optimiza- 
tion requires 13 minutes on a DEC3100, a much less powerful machine than the Cray. 
Generally, these algorithms can find only local minima and therefore many random 
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Fig.  9(a). Minimum integrated mean square error designs for 19 = 2, n = 1-9 ,  and the Gaussian correlation 
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starts are required. 
Since J(D) is dependent on R(.), robust designs need to be found for general 

R(.).  Sacks et al. (1989a) found that for n = 9, p = 2 and R(d) = exp{ -O ~ = 1  ~ }  
(see Section 4.3.4 for details on the Gaussian correlation function) the IMSE design 
for 0 = 1 is robust in terms of relative efficiency. However, this analysis used a 
quadratic polynomial model and the results may not extend to higher dimensions nor 
different linear model components. Sacks et al. (1989b) used the optimal design for 
the Gaussian correlation function with 0 = 2 for design efficiency-robustness. 

Figure 9(a) displays IMSE designs for p = 2 and n = 1 , . . .  ,9 for 0 = .5, 2, 10. 
The designs, in general lie in the interior of S. For fixed design size n, the designs 
usually are similar geometrically for different O values with the scale decreasing as 
0 increases. They have much symmetry for some values of n, particularly n = 12. 
Notice that for the case when n = 5 that the design only takes on three unique values 
for each of the input variables. These designs tend to have clumped projections onto 
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lower dimension marginals of  the input space. Better projection properties are needed 
when the true function is only dependent on a subset of the input variables. 

5.3. Maximin and minimax designs 

Johnson et al. (1990) developed the idea of minimax and maximin designs. These 
designs are dependent on a distance measure or metric. Let d(., .) be a metric on 
[0, 1] p. Hence Vzl ,  x2, z3 c [0, 1] p, 

d(Xl,Xz)=d(xz, xl), 

d(xl,x2) ~ O, 

d ( z l , x 2 ) = O ~ x l  =x2, 

d(Xl,X2) < d(xl,x3) + d(x3,x2). 
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DEFINITION 3. Design DMI is a Minimax Distance Design if 

r ~ n m a x d ( x ,  D) = max d(x, DMI) 

where 

d(x, D) = min d(x, xo). 
x o E  D 

Minimax distance designs ensure that all points in [0, 1] p are not too far from a 
design point. Let d(., .) be Euclidean distance and consider placing a p-dimensional 
sphere with radius r around each design point. The idea of  a minimax design is to 
place the n points so that the design space is covered by the spheres with minimal r. 
As an illustration, consider the owner of  a petroleum corporation who wants to open 
some franchise gas stations. The gas company would like to locate the stations in the 
most convenient sites for the customers. A minimax strategy of  placing gas stations 
would ensure that no customer is too far from one of  the company's  stations. 

Figure 10(a) shows a minimax design for p -- 2 and n = 6 with d(., .) being 
Euclidean distance. The maximum distance to a design point is .318. For small n, 
minimax designs will generally lie in the interior of the design space. 

DEFINITION 4. A design DMA is a Maximin Distance Design if 

max min d(x, ,x2) = min d(x~,x2). 
D X l ~ x 2 E O  X l , f C 2 E D M A  
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Again, let d(., .) be Euclidean distance. Maximin designs pack the n design points, 
with their associated spheres, into the design space, S, with maximum radius. Parts 
of the sphere may be out of S but the design points must be in S. Analogous to the 
minimax illustration above is the position of the owners the gas station franchises. 
They wish to minimize the competition from each other by locating the stations as 
far apart as possible. A maximin strategy for placing the franchises would ensure that 
no two stations are too close to each other. 

Figure 10(b) shows a maximin design for p = 2, n = 6 and d(., .) Euclidean 
distance. For small n, maximin designs will generally lie on the exterior of S and fill 
in the interior as n becomes large. 

5.4. Hyperbolic cross points 

Under the tensor product covariance models, it is possible to approximate and integrate 
functions with greater accuracy than in the general case. One gets the same rates of 
convergence as in univariate problems, apart from a multiplicative penalty that is some 
power of log n. Hyperbolic cross point designs, also known as sparse grids have been 
shown to achieve optimal rates in these cases. See Ritter (1995). These point sets were 
first developed by Smolyak (1963). They were used in interpolation by Wahba (1978) 
and Gordon (1971) and by Paskov (1993) for integration. Chapter 4 of Ritter (1995) 
gives a good description of the construction of these points and lists other references. 

6. Frequentist prediction and inference 

The frequentist approach to prediction and inference in computer experiments is based 
on numerical integration. For a scalar function Y = f ( X ) ,  consider a regression model 
of the form 

Y = y ( x )  - z ( x ) z  (12) 

where Z ( X )  is a row vector of predictor functions and fl is a vector of parameters. 
Suitable functions Z might include low order polynomials, trigonometric polynomials 
wavelets, or some functions specifically geared to the application. Ordinarily Z ( X )  
includes a component that is always equal to 1 in order to introduce an intercept term 
into equation (12). 

It is unrealistic to expect that the function f will be exactly representable as the 
finite linear combination given by (12), and it is also unrealistic to expect that the 
residual will be a random variable with mean zero at every fixed Xo. This is why 
we only write f - Z/3. There are many ways to define the best value of/3, but an 
especially natural approach is to choose/3 to minimize the mean squared error of the 
approximation, with respect to some distribution F on [0, 1] p. Then the optimal value 
for fl is 
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So if one can integrate over the domain of X then one can fit regression approximations 
there. 

The quality of the approximation may be assessed globally by the integrated mean 
squared error 

f (Y - Z(X)fl) 2 dF. 

For simplicity we take the distribution F to be uniform on [0, 1] v. Also for simplicity 
the integration schemes to be considered usually estimate f g(X)dF by 

n 
1 

n 
i : 1  

for well chosen points x l , . . . ,  xn. Then ilLS may be estimated by linear regression 

n _1 Z(xi)tf(xi),  f i  = z ( x i ) ' z ( x o  n 
i = l  i=1 

or when the integrals of squares and cross products of Z's are known by 

(/ )-',- 
: z ( X ) ' Z ( X ) d F  -  Z(xO'f(.O. 

n i : 1  

(13) 

Choosing the components of Z to be an orthogonal basis, such as tensor prod- 
ucts of orthogonal polynomials, multivariate Fourier series or wavelets, equation (13) 
simplifies to 

n 
1 

i=1 

(14) 

and one can avoid the cost of matrix inversion. The computation required by equation 
(14) grows proportionally to nr not n 3, where r = r(n) is the number of regression 
variables in Z. If r = O(n) then the computations grow as n 2. Then, in the example 
from Section 3, an hour of function evaluation followed by a minute of algebra would 
scale into a day of function evaluation followed by 9.6 hours of algebra, instead of 
the 9.6 days that an n 3 algorithm would require. If the Z(xi) exhibit some sparsity 
then it may be possible to reduce the algebra to order n or order n log n. 

Thus the idea of turning the function into data and making exploratory plots can 
be extended to turning the function into data and applying regression techniques. The 
theoretically simplest technique is to take Xi iid U[0, 1] v. Then (Xi, Yi) are iid pairs 
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with the complication that Y has zero variance given X. The variance matrix of ~ is 
then 

( / ) - 1  ( / ) - 1  
1 Z'ZdF Var(Z(X)'Y(X)) ZtZdF 
n 

(15) 

and for orthogonal predictors this simplifies further to 

1Var (Z(X) 'Y(X) )  . (16) n 
Thus any integration scheme that allows one to estimate variances and covariances 

of averages of Y times components of Z allows one to estimate the sampling variance 
matrix of the regression coefficients/3. For iid sampling one can estimate this variance 
matrix by 

1 - ,  

n - r - 1  (Z(xi)Y(xi)-t3) (Z(xi)Y(xi)-fl)  
i=1 

when the row vector Z comprises an intercept and r additional regression coefficients. 
This approach to computer experimentation should improve if more accurate inte- 

gration techniques are substituted for the iid sampling. Owen (1992a) investigates the 
case of Latin hypercube sampling for which a central limit theorem also holds. 

Clearly more work is needed to make this method practical. For instance a scheme 
for deciding how many predictors should be in Z, or otherwise for regularizing/3 is 
required. 

7. Frequentist experimental designs 

The frequentist approach proposed in the previous section requires a set of points 
x l , . . . ,  xn that are good for numerical integration and also allow one to estimate the 
sampling variance of the corresponding integrals. These two goals are somewhat at 
odds. Using an iid sample makes variance estimation easier while more complicated 
schemes described below improve accuracy but make variance estimation harder. 

The more basic goal of getting points x~ into "interesting corners" of the input 
space, so that important features are likely to be found is usually well served by point 
sets that are good for numerical integration. 

We assume that the region of interest is the unit cube [0, 1] p, and that the integrals 
of interest are with respect to the uniform distribution over this cube. Other regions of 
interest can usually be reduced to the unit cube and other distributions can be changed 
to the uniform by a change of variable that can be subsumed into f .  

Throughout this section we consider an example with p = 5, and plot the design 
points xi. 
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Fig. 11.25 distinct points among 625 points in a 55 grid. 

7.1. Grids 

Since varying one coordinate at a time can cause one to miss important aspects of f ,  
it is natural to consider instead sampling f on a regular grid. One chooses k different 
values for each of X I through X p and then runs all k p combinations. This works 

well for small values of p, perhaps 2 or 3, but for larger p it becomes completely 
impractical because the number of runs required grows explosively. 

Figure 11 shows a projection of 55 = 625 points from a uniform grid in [0, 1] 5 onto 
two of the input variables. Notice that with 625 runs, only 25 distinct values appear 

~ n  the plane, each representing 25 input settings in the other three variables. Only 5 
distinct values appear for each of input variable taken singly. In situations where one 
of the responses y k  depends very strongly on only one or two of the inputs X j the 
grid design leads to much wasteful duplication. 

The grid design does not lend itself to variance estimation since averages over 
the grid are not random. The accuracy of a grid based integral is typically that of a 
univariate integral based on k = n 1/p evaluations. (See Davis and Rabinowitz, 1984.) 
For large p this is a severe disadvantage. 
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Fig. 12. A 34 point Fibonacci lattice in [0, 1] 2. 

7.2. Good lattice points 

A significant improvement on grids may be obtained in integration by the method of 
good lattice points. (See Sloan and Joe (1994) and Niederreiter (1992) for background 
and Fang and Wang (1994) for applications to statistics.) 

For good lattice points 

j {h i ( i - i )+0 .5}_  
X i -~ ?~ 

where {z} is z modulo 1, that is, z minus the greatest integer less than or equal to z 
and hj are integers with hi = 1. The points vi with v~ = ihj/n for integer i form 
a lattice in R p. The points xi are versions of these lattice points confined to the unit 
cube, and the term "good" refers to a careful choice of n and hj usually based on 
number theory. 

Figure 12 shows the Fibonacci lattice for p = 2 and n = 34. For more details 
see Sloan and Joe (1994). Here hi = 1 and h2 = 21. The Fibonacci lattice is only 
available in 2 dimensions. Appendix A of Fang and Wang (1994) lists several other 
choices for good lattice points, but the smallest value of n there for p = 5 is 1069. 
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Hickernell (1996) discusses greedy algorithms for finding good lattice points with 
smaller n. 

The recent text (Sloan and Joe, 1994) discusses lattice rules for integration, which 
generalize the method of good lattice points. Cranley and Patterson (1976) consider 
randomly perturbing the good lattice points by adding, modulo 1, a random vector 
uniform over [0, 1] p to all the xi. Taking r such random offsets for each of the n data 
points gives nr observations with r - 1 degrees of freedom for estimating variance. 

Lattice integration rules can be extraordinarily accurate on smooth periodic inte- 
grands and thus an approach to computer experiments based on Cranley and Patter- 
son's method might be expected to work well when both f ( x )  and Z(x)  are smooth 
and periodic. Bates et al. (1996) have explored the use of lattice rules as designs for 
computer experiments. 

7.3. Latin hypercubes 

While good lattice points start by improving the low dimensional projections of grids, 
Latin hypercube sampling starts with iid samples. A Latin hypercube sample has 

X~ - ~rJ(i) - Uj (17) 
n 

where the 7rJ are independent uniform random permutations of the integers 1 through 
n, and the U~ are independent U[0, 1] random variables independent of the 7rj. 

Latin hypercube sampling was introduced by McKay et al. (1979) in what is widely 
considered to be the first paper on computer experiments. The sample points are 
stratified on each of p input axes. A common variant of Latin hypercube sampling 
has centered points 

=  J(i) - 0 . 5  ( 1 8 )  

n 

Point sets of this type were studied by Patterson (1954) who called them lattice 
samples. 

Figure 13 shows a projection of 25 points from a (centered) Latin hypercube sample 
over 5 variables onto two of the coordinate axes. Each input variable gets explored 
in each of 25 equally spaced bins. 

The stratification in Latin hypercube sampling usually reduces the variance of es- 
timated integrals. Stein (1987) finds an expression for the variance of a sample mean 
under Latin hypercube sampling. Assuming that f f ( X )  2 dF  < co write 

p 

f ( x )  = , +  j(xJ) + e (x)  
j=l 

(19) 
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Fig. 13.25 points of a Latin hypercube sample. The range of each input variable may be partitioned into 
25 bins of equal width, drawn here with horizontal and vertical dotted lines, and each such bin contains 

one of the points. 

where tz = f f(X)dF and aj(x) = fx:xJ=~(f(X) -#)dF_j in which dF_j = 
IIk#j dXk is the uniform distribution over all input variables except the j'th. Equa- 
tion (19) expresses f as the sum of  a grand mean p, univariate main effects a j  and 
a residual from additivity e(X). 

Stein shows that under Latin hypercube sampling 

V a r ( l £  ) 1 Ie(X)2dF+o 

whereas under iid sampling 

) (/ ) V a r ( -  ~ f ( x i ) l  n = _1 e(X) 2 dF + ~ o~j(XJ) 2 d F  . (21) 
~ / ~  i = l  n j = l  

By balancing the univariate margins, Latin hypercube sampling has removed the main 
effects of  the function f from the error variance. 
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Owen (1992a) proves a central limit theorem for Latin hypercube sampling of 
bounded functions and Loh (1993) proves a central limit theorem under weaker con- 
ditions. For variance estimation in Latin hypercube sampling see (Stein, 1987; Owen, 
1992a). 

7.4. Better Latin hypercubes 

Latin hypercube samples look like random scatter in any bivariate plot, though they 
are quite regular in each univariate plot. Some effort has been made to find especially 
good Latin hypercube samples. 

One approach has been to find Latin hypercube samples in which the input variables 
have small correlations. Iman and Conover (1982) perturbed Latin hypercube samples 
in a way that reduces off diagonal correlation. Owen (1994b) showed that the technique 
in Iman and Conover (1982) typically reduces off diagonal correlations by a factor 
of 3, and presented a method that empirically seemed to reduce the off diagonal 
correlations by a factor of order n from O(n -1/2) to O(n-3/2). This removes certain 
bilinear terms from the lead term in the error. Dandekar (1993) found that iterating 
the method in Iman and Conover (1982) can lead to large improvements. 

Small correlations are desirable but not sufficient, because one can construct cen- 
tered Latin hypercube samples with zero correlation (unless n is equal to 2 modulo 4) 
which are nonetheless highly structured. For example the points could be arranged in 
a diamond shape in the plane, thus missing the center and comers of the input space. 

Some researchers have looked for Latin hypercube samples having good properties 
when considered as designs for Bayesian prediction. Park (1994) studies the IMSE 
criterion and Morris and Mitchell (1995) consider entropy. 

7.5. Randomized orthogonal arrays 

An orthogonal array A is an n by p matrix of integers 0 ~< A~ ~< b - 1. The array has 
strength t ~< p if in every n by t submatrix of A all of the b t possible rows appear 
the same number A of times. Of course n = Ab t. 

Independently Owen (1992b, 1994a) and Tang (1992, 1993) considered using or- 
thogonal arrays to improve upon Latin hypercube samples. 

A randomized orthogonal array (Owen, 1992b) has two versions, 

X [  = 7cj(A~) + U~ 
b (22) 

and 

X]  = ~'J(AJ) + 0.5 
b (23) 

just as Latin hypercube sampling has two versions. Indeed Latin hypercube sampling 
corresponds to strength t = 1, with A = 1. Here the 7rj are independent uniform 
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Fig. 14. 25 points of a randomly centered randomized orthogonal array. For whichever two (of five) variables 
that are plotted, there is one point in each reference square. 

permutations of 0 , . . . , b  - 1. Patterson (1954) considered some schemes like the 
centered version. 

If one were to plot the points of a randomized orthogonal array in t or fewer of the 
coordinates, the result would be a regular grid. The points of a randomized orthogonal 
array of strength 2 appear to be randomly scattered in 3 dimensions. 

Figure 14 shows a projection of 25 points from a randomly centered randomized 
orthogonal array over 5 variables onto two of the coordinate points. Each pair of 
variables gets explored in each of 25 square bins. The plot for the centered version of 
a randomized orthogonal array is identical to that for a grid as shown in Figure 11. 

The analysis of variance decomposition used-above for Latin hypercube sampling 
can be extended to include interactions among 2 or more factors. See Efron and Stein 
(1981), Owen (1992b) and Wahba (1990) for details. Gu and Wahba (1993) describe 
how to estimate and form confidence intervals for these main effects in noisy data. 

Owen (1992b) shows that main effects and interactions of t or fewer variables do 
not contribute to the asymptotic variance of a mean over a randomized orthogonal 
array, and Owen (1994a) shows that the variance is approximately n -1 times the sum 
of integrals of squares of interactions among more than t inputs. 
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Fig. 15. 25 points of  an orthogonal array based Latin hypercube sample. For whichever two (of five) 
variables that are plotted, there is one point in each reference square bounded by solid lines. Each variable 

is sampled once within each of 25 horizontal or vertical bins. 

Tang (1993) introduced orthogonal array based Latin hypercube samples. The points 
of these designs are Latin hypercube samples X~, such that [bX]J is an orthogonal 
array. Here b is an integer and [zJ is the smallest integer less than or equal to z. Tang 
(1993) shows that for a strength 2 array the main effects and two variable interactions 
do not contribute to the integration variance. 

Figure 15 shows a projection of 25 points from an orthogonal array based Latin 
hypercube sample over 5 variables onto two of the coordinate points. Each variable 
individually gets explored in each of 25 equal bins and each pair of variables gets 
explored in each of 25 squares. 

7.6. Scrambled nets 

Orthogonal arrays were developed to balance discrete experimental factors. As seen 
above they can be embedded into the unit cube and randomized with the result that 
sampling variance is reduced. But numerical analysts and algebraists have developed 
some integration techniques directly adapted to balancing in a continuous space. Here 
we describe (t, m, s)-nets and their randomizations. A full account of (t, m, s)-nets 
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F i g .  16.  2 5  p o i n t s  o f  a s c r a m b l e d  (0 ,  2 ,  5 ) - n e t  in b a s e  5.  F o r  w h i c h e v e r  t w o  ( o f  f i v e )  v a r i a b l e s  that  are  

p l o t t e d ,  t h e r e  is  o n e  p o i n t  in e a c h  r e f e r e n c e  square .  E a c h  v a r i a b l e  is  s a m p l e d  o n c e  w i t h i n  e a c h  o f  2 5  e q u a l  

b ins .  

is given by Niederreiter (1992). Their randomization is described by Owen (1995, 
1996a). 

Let p = s >~ 1 and b >~ 2 be integers. An elementary subcube in base b is o f  the 
form 

E =  ~-j,  bk j 
j = l  

for integers kj, cj with kj > / 0  and 0 ~< cj < b k~ . 

Let m >~ 0 be an integer. A set o f  points Xi,  i = 1 , . . . ,  b m, of  from [0, 1) s is 
a (0, m,  s)-net in base b if every elementary subcube E in base b of  vo lume b -,'~ 
has exactly 1 of  the points. That is, every cell that "should" have one point of  the 
sequence does have one point of  the sequence. 

This is a very strong form of  equidistribution and by weakening it somewhat,  con- 
structions for more values of  s and b become available. Let ~ ~< m be a nonnegative 
integer. A finite set of  b m points from [0, 1) s is a (t, m,  s)-net in base b if every ele- 
mentary subcube in base b of  vo lume b ~-'~ contains exactly b t points of  the sequence. 
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F i g .  1 7 ,  T h e  1 2 5  p o i n t s  o f  a s c r a m b l e d  ( 0 ,  3 ,  5 ) - n e t  i n  b a s e  5 .  F o r  w h i c h e v e r  t w o  ( o f  f i v e )  v a r i a b l e s  t h a t  

a r e  p l o t t e d ,  t h e  r e s u l t  i s  a 5 b y  5 g r i d  o f  5 p o i n t  L a t i n  h y p e r c u b e  s a m p l e s .  E a c h  v a r i a b l e  i s  s a m p l e d  o n c e  

w i t h i n  e a c h  o f  1 2 5  e q u a l  b i n s .  E a c h  t r i p l e  o f  v a r i a b l e s  c a n  b e  p a r t i t i o n e d  i n t o  1 2 5  c o n g r u e n t  c u b e s ,  e a c h  

o f  w h i c h  h a s  o n e  p o i n t .  

Cel l s  that  " s h o u l d "  h a v e  b t po in t s  do h a v e  b t points ,  t h o u g h  cel ls  that  " s h o u l d "  h a v e  

1 p o i n t  m i g h t  not .  

B y  c o m m o n  u s a g e  the  n a m e  (t ,  m ,  s ) - n e t  a s sumes  that  the  le t ter  s is u s e d  to d e n o t e  

the  d i m e n s i o n  o f  the  i npu t  space ,  t h o u g h  one  c o u l d  speak  o f  (t ,  m ,  p ) -ne t s .  A n o t h e r  

c o n v e n t i o n  to no te  is that  the  s u b c u b e s  are  ha l f -open .  Th i s  m a k e s  it  c o n v e n i e n t  to 

pa r t i t ion  the  inpu t  space  in to  c o n g r u e n t  subcubes .  

T h e  b a l a n c e  p rope r t i e s  o f  a (t ,  r a ,  s ) - n e t  are  .greater than  those  o f  an o r t h o g o n a l  

array.  I f  X {  is a (t ,  m ,  s ) - n e t  in base  b then  [ b X ] J  is an o r t h o g o n a l  a r ray  o f  s t reng th  

r a in{s ,  m - t} .  B u t  the  ne t  a lso  has  ba l ance  p rope r t i e s  w h e n  r o u n d e d  to d i f f e r en t  

p o w e r s  o f  b on all  axes ,  so l o n g  as the  p o w e r s  s u m  to no  m o r e  than  m - t .  T h u s  the  

ne t  c o m b i n e s  aspec t s  o f  o r t h o g o n a l  a r rays  and  m u l t i - l e v e l  o r t h o g o n a l  a r rays  all  in o n e  

p o i n t  set. 

In  the  c a s e  o f  a (0, 4, 5 ) -ne t  in base  5, one  has  625  po in t s  in [0, 1) 5 and  one  can  

c o u n t  that  the re  a re  4 3 7 5 0  e l e m e n t a r y  s u b c u b e s  o f  v o l u m e  1 / 6 2 5  o f  v a r y i n g  a spec t  

ra t ios  e a c h  o f  w h i c h  has  one  o f  the  625 poin ts .  
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Fig. 18. The 625 points of a scrambled (0, 4, 5)-net in base 5. For whichever two (of five) variables that 
are plotted, the square can be divided into 625 squares of side 1/25 or into 625 rectangles of side 1/5 by 
1/125 or into 625 rectangles of side 1/125 by 1/5 and each such rectangle has one of the points. Each 
variable is sampled once within each of 625 equal bins. Each triple of variables can be partitioned into 625 
hyperrectangles in three different ways and each such hyperrectangle has one of the points. Each quadruple 
of variables can be partitioned into 625 congruent hypercubes of side 1/5, each of which has one point. 

For t >~ 0, an infinite sequence (Xi)i~>I of points from [0, 1) s is a (t, s)-sequence 

( X  ~(k+l)b'~ is a (t, ra, s)-net in base b if for all k >~ 0 and m >~ t the finite sequence ~ iJi=kb'-+l 
in base b. 

The advantage of  a (t, s)-sequence is that if one finds that the first b r~ points are not 
sufficient for an integration problem, one can find another b ~ points that also form a 
(t, ra, s)-net and tend to fill in places not occupied by the first set. If  one continues 
to the point of  having b such (t, m,  s)-nets, then the complete set of points comprises 

a (t, m + 1, s)-net. 
The theory of  (t, re, s)-nets and (t, s)-sequences is given in Niederreiter (1992). A 

famous result of  the theory is that integration over a (t, ra, s)-net can attain an accuracy 
of  order O(log(n) s-l/n) while restricting to (t, s)-sequences raises this slightly to 
O ( l o g ( n ) S / n ) .  These results require that the integrand be of bounded variation in the 
sense of Hardy and Krause. For large s, it takes unrealistically large n for these rates 
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to be clearly better than rz -1/2 but in examples they seem to outperform simple Monte 
Carlo. 

The construction of (t, m, s)-nets and (t, s)-sequences is also described in Nieder- 
reiter (1992). Here we remark that for prime numbers s a construction by Faure (1982) 
gives (0, s)-nets in base s and Niederreiter extended the method to prime powers s. 
(See Niederreiter, 1992.) Thus one can choose b to be the smallest prime power greater 
than or equal to s and use the first s variables of the corresponding (0, b)-sequence 
in base b. 

Owen (1995) describes a scheme to randomize (t, m, s)-nets and (t, s)-sequences. 
The points are written in a base b expansion and certain random permutations are 
applied to the coefficients in the expansion. The result is to make each permuted Xi 
uniformly distributed over [0, 1) s while preserving the (t, m, s)-net or (t, s)-sequence 
structure of the ensemble of X~. Thus the sample estimate n -I ~i~=1 f(X~) is unbi- 
ased for f f (X)  dF  and the variance of it may be estimated by replication. On some 
test integrands in (Owen, 1995) the randomized nets outperformed their unrandom- 
ized counterparts. It appears that the unscrambled nets have considerable structure, 
stemming from the algebra underlying them, and that this structure is a liability in 
integration. 

Figure 16 shows the 25 points of a scrambled (0, 2, 5)-net in base 5 projected onto 
two of the five input coordinates. These points are the initial 25 points of a (0, 5)- 
sequence in base 5. This design has the equidistribution properties of an orthogonal 
array based Latin hypercube sample. Moreover every consecutive 25 points in the 
sequence X25a+l, X25a+z, • • •, Xzs(~+l) has these equidistribution properties. The first 
125 points, shown in Figure 17 have still more equidistribution properties: any triple 
of the input variables can be split into 125 subcubes each with one of the Xi, in any 
pair of variables the points appear as a 5 by 5 grid of 5 point Latin hypercube samples 
and each individual input variable can be split into 125 cells each having one point. 
The first 625 points, are shown in Figure 18. 

Owen (1996a) finds a variance formula for means over randomized (t, m, s)-nets 
and (t, s)-sequences. The formula involves a wavelet-like anova combining nested 
terms on each coordinate, all crossed against each other. It turns out that for any 
square integrable integrand, the resulting variance is o(n -1) and it therefore beats any 
of the usual variance reduction techniques, which typically only reduce the asymptotic 
coefficient of n -1. 

For smooth integrands with s = 1, the variance is in fact O(n -3) and in the general 
case Owen (1996b) shows that the variance is O(rz-3(logn)S-1). 

8. Selected applications 

One of the largest fields using and developing deterministic simulators is in the de- 
signing and manufacturing of VLSI circuits. Alvarez et al. (1988) describe the use of 
SUPREM-III (Ho et al., 1984) and SEDAN-II (Yu et al., 1982) in designing BIMOS 
devices for manufacturability. Aoki et al. (1987), use CADDETH a two dimensional 
device simulator, for optimizing devices and for accurate prediction of device sensitiv- 
ities. Sharifzadeh et al. (1989) use SUPREME-III and PISCES-II (Pinto et al., 1984) 
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to compute CMOS device characteristics as a function of the designable technology 
parameters. Nasif et al. (1984) describe the use of FABRICS-II to estimate circuit 
delay times in integrated circuits. 

The input variables for the above work are generally device sizes, metal concentra- 
tions, implant doses and gate oxide temperatures. The multiple responses are threshold 
voltages, subthreshold slopes, saturation currents and linear transconductance although 
the output variables of concern depend on the technology under investigation. The en- 
gineers use the physical/numerical simulators to assist them in optimizing process, 
device, and circuit design before the costly step of building prototype devices. They 
are also concerned with minimizing transmitted variability as this can significantly re- 
duce the performance of the devices and hence reduce yield. For example, Welch et al. 
(1990), Currin et al. (1991) and Sacks et al. (1989b) discuss the use of simulators to 
investigate the effect of transistor dimensions on the asynchronization of two clocks. 
They want to find the combination of transistor widths that produce zero clock skews 
with very small transmitted variability due to uncontrollable manufacturing variability 
in the transistors. 

TIMS, a simulator developed by T. Osswald and C. L. Tucker III, helps in optimiz- 
ing a compression mold filling process for manufacturing automobiles (Church et al., 
1988). In this process a sheet of molding compound is cut and placed in a heated mold. 
The mold is slowly closed and a constant force is applied during the curing reaction. 
The controlling variables of the process are the geometry and thickness of the part, 
the compound viscosity, shape and location within the charge, and the mold closing 
speed. The simulator then predicts the position of the flow front as a function of time. 

Miller and Frenklach (1983) discuss the use of computers to solve systems of 
differential equations describing chemical kinetic models. In their work, the inputs 
to the simulator are vectors of possibly unknown combustion rate constants and the 
outputs are induction-delay times and concentrations of chemical species at specified 
reaction times. The objectives of their investigations are to find values of the rate 
constants that agree with experimental data and to find the most important rate constant 
to the process. Sacks et al. (1989a) explore some of the design issues and applications 
to this field. 

TWOLAYER, a thermal energy storage model developed by Alan Solomon and 
his colleagues at the Oak Ridge National Laboratory, simulates heat transfer through 
a wall containing two layers of different phase change material. Currin et al. (1991) 
utilize TWOLAYER in a computer experiment. The inputs into TWOLAYER are the 
layers dimensions, the thermal properties of the materials and the characteristics of the 
heat source. The object of interest was finding the configuration of the input variables 
that produce the highest value of a heat storage utility index. 

FOAM (Bartell et al., 1981) models the transport of polycyclic aromatic hydro- 
carbon spills in streams using structure activity relationships. Bartell et al. (1983) 
modified this model to predict the fate of anthracene when introduced into ponds. 
This model tracks the "evaporation and dissolution of anthracene from a surface slick 
of synthetic oil, volatilization and photolytic degradation of dissolved anthracene, 
sorption to suspended particulate matter and sediments and accumulation by pond 
biota" (Bartell, 1983). They used Monte Carlo error analyses to assess the effect of 
the uncertainty in model parameters on their results. 
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