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Abstract:The authors consider semiparametric efficient estimation of parameters in the conditional mean
model for a simple incomplete data structure in which the outcome of interest is observed only for a random
subset of subjects but covariates and surrogate (auxiliary) outcomes are observed for all. They use optimal
estimating function theory to derive the semiparametric efficient score in closed form. They show that when
covariates and auxiliary outcomes are discrete, a Horvitz–Thompson type estimator with empirically esti-
mated weights is semiparametric efficient. The authors give simulation studies validating the finite-sample
behaviour of the semiparametric efficient estimator and its asymptotic variance; they demonstrate the effi-
ciency of the estimator in realistic settings.

Estimation semiparamétriquement efficace pour le problème
du résultat auxiliaire dans le modèle à moyenne conditionnelle
Résumé : Les auteurs s’int´eressent `a l’estimation semiparam´etriquement efficace de param`etres dans le mo-
dèleà moyenne conditionnelle pour une structure de donn´ees incompl`ete simple dans laquelle l’´evénement
d’intérêt n’est observ´e que pour un sous-ensemble al´eatoire de sujets alors que les covariables et les varia-
bles de substitution (auxiliaires) sont observ´ees pour tous. Ils font appel `a la théorie des fonctions d’estima-
tion optimales pour d´eterminer le score semiparam´etriquement efficace de fac¸on explicite. Ils montrent que
lorsque les covariables et les variables auxiliaires sont discr`etes, un estimateur de type Horvitz–Thompson
à poids estim´es empiriquement est semiparam´etriquement efficace. Les auteurs pr´esentent des ´etudes de
simulation validant le comportement `a taille finie de l’estimateur semiparam´etriquement efficace et de sa
variance asymptotique; ils d´emontrent en outre l’efficacit´e de cet estimateur dans des contextes r´ealistes.

1. INTRODUCTION

Medical research frequently aims to study the association between an outcome variable and a set
of covariates. Sometimes, it is feasible to obtain a crude outcome measure on a large sample,
but the true outcome can be ascertained only for a subsample. Alonzo, Pepe & Lumley (2003),
for example, analyzed data from the Great Smoky Mountains Study (Costelo et al. 1996) on
the prevalence of depression among adolescents in western North Carolina. Subjects were first
assessed using an inexpensive screening test; those who scored above a certain threshold and
a subset of those who scored below were selected for definitive diagnosis of depression. Pepe,
Reilly & Fleming (1994) described a setting where patients who received allogeneicbone mar-
row transplant for aplastic anemia may develop graft versus host disease (GVHD). Measuring
chronic GVHD requires longitudinal follow-up, but acute GVHD can be readily ascertained
when patients are still being treated at the hospital. Since young patients without a history of
acute GVHD are thought to be at low risk of chronic GVHD, it is cost-effective to follow only a
fraction of them, but all who do have such a history, for diagnosis of the chronic outcome. See
Pepe, Reilly & Fleming (1994) for additional examples.

Variables such as the screening test result and acute GVHD are often called surrogate out-
comes. Some authors, for example, Prentice (1989), have advocated using the surrogate outcome
in place of the true outcome to make scientific inference, especially when the true outcome is im-
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possible to measure. In the two examples mentioned, however, it was possible to measure the
true outcome on a subsample. In this situation, it is desirable to use the available true outcomes
to help answer a scientific question, for example, to evaluate the effect on outcome of a set of
covariates. Because the surrogate and true outcomes are correlated, the relationship between the
surrogate outcome and covariates is informative and may be used to strengthen the inference
regarding the true outcome. Following Pepe, Reilly & Fleming (1994), henceforth we call the
surrogate outcome the auxiliary outcome to emphasize that we are using the surrogate outcome
as auxiliary information.

Let Y , S andX denote the true outcome, the auxiliary outcome and the covariates respec-
tively. Y is a scalar andS can be a vector. The true relationship between(Y, S,X) may be
complex and there may be insufficient information to specify a joint likelihood. We assume that
the main scientific goal is to assess the regression relationship betweenY andX specified by the
conditional mean model

E(Y |X) = µ(X; θ), (1)

whereµ is a known function andθ is a p-dimensional parameter of interest. Since the joint
distribution of(Y, S,X) is otherwise unspecified, the nuisance parameterη = (η1, η2, η3) has
three (possibly infinite-dimensional) components:η1 = P(S | Y,X), the conditional distribu-
tion of the auxiliary;η2 = P(ε |X), the mean zero conditional distribution of the residual
ε = Y − µ(X; θ); andη3 = P(X), the marginal distribution of the covariates. LetR be a
0/1 random variable withR = 1 indicating thatY is observed, otherwiseR = 0. S andX are
always observed. We assume that subjects are randomly sampled prospectively from an infinite
population, and that the subset withR = 1 is a random subsample, usually called the validation
subsample, selected using variable probability sampling (Lawless, Kalbfleisch & Wild 1999).
Thus, the observations

{
Zi = (Ri, RiYi, Si, Xi), i = 1, . . . , n

}
are identically and indepen-

dently distributed. Letπ = P(R = 1 | Y, S,X) be the probability of observingY . We assume
thatπ = π(S,X), i.e., the true outcome is missing at random (MAR) as described in Little &
Rubin (1987), and that there exists aσ > 0 so thatπ(S,X) ≥ σ.

This article discusses semiparametric efficient estimation ofθ. We start in Section 2 with a
derivation of the efficient score function (Bickel, Klaassen, Ritov & Wellner 1993), which we
denote as̀ ∗θ. This also can be obtained as a special case of work by Holcroft, Rotnitzky &
Robins (1997) and Rotnitzky & Robins (1995b). We believe our result is worth presenting sep-
arately, however, for two reasons. First, our derivation takes advantage of a connection between
semiparametric efficient estimation and optimal estimating function theory which is both con-
ceptually interesting and broadly applicable to problems of missing data. Second, for the aux-
iliary outcome problem,̀∗θ may be obtained in simple closed form. In Section 3 we show that,
whenS andX are discrete, a Horvitz–Thompson estimator with empirically estimated weights
is semiparametric efficient. We connect our approach with a class of estimators motivated by the
mean-score method of Pepe, Reilly & Fleming (1994), showing that a semiparametric efficient
estimator (SEE) may also be obtained by optimizing a class of Horvitz–Thompson estimators
with estimated weights. Section 4 presents a data example and some simulation results eval-
uating the finite-sample performance of the SEE and its asymptotic variance estimator. Some
discussion is provided in Section 5.

2. EFFICIENT SCORE FUNCTION FOR θ

A primary goal of semiparametric efficient estimation is to determine the efficient score function
`∗θ or, equivalently, the efficient influence functioñ`θ = (E`∗θ`

∗>
θ )−1`∗θ . Estimators obtained as

a consistent solution to estimated efficient score equations, or as “one-step”approximations to
the solution starting from a consistent estimator, have an asymptotic normal distribution whose
asymptotic variance attains the semiparametric efficiency bound(E`∗θ`

∗>
θ )−1 (Bickel, Klaassen,

Ritov & Wellner 1993). This is the minimum possible variance for regular, asymptotically linear
(RAL) estimators; those that attain it are semiparametric efficient. (We restrict ourselves to RAL
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estimators in this discussion rather than the broader class of regular estimators as discussed by
Hajek and Lecam). Generally,`∗θ is defined to be the usual parametric score function forθ,
with the nuisance parametersη fixed, minus its projection onto the “nuisance tangent space,” the
closed linear span of scores for one-dimensional parametric submodels forη passing through
the true model. The efficient scores are often calculated by finding this orthogonal projection,
either from first principles or by using operator theory applied to the “score operator” (Bickel,
Klaassen, Ritov & Wellner 1993,§3.4; van der Vaart 1998,§25.4–§25.5).

An alternative approach is to first characterize the class of influence functions for all RAL
estimators. Suppose there is a parametrization of the setG = {G(h;Z, θ) : h ∈ H} of all
such influence functions in terms ofθ and a classH of functionsh = h(Z). Suppose further
that, for each fixedh and forθ in a neighborhood of the true value,EθG(h;Z, θ) = 0. Then
G is a set of generalized estimating functions indexed byH (see van der Vaart 1998,§25.9).
Furthermore, it is the largest such set. If we can findh∗ inH such thatG(h∗;Z, θ) has minimum
variance among all influence functions, then we will have found the efficient influence function
and hence the efficient score. The theory of optimal estimating functions, as in Godambe (1960),
Godambe & Heyde (1987) and Heyde (1988, 1997), is useful in findingh∗. A somewhat more
general formulation is the following result of Newey & McFadden in Chapter 36 of Engle and
McFadden (1994, Th. 5.3, page 2166), restated using our notation in the current context:

THEOREM 1. SupposeG = {G(h;Z, θ) : h ∈ H} is a set of estimating functions in-
dexed by a classH of functionsh = h(Z), such that the asymptotic variance of the es-
timator θ̂h that solves the equation

∑n
i=1 G(h;Zi, θ) = 0 can be expressed asV (h) =

D(h)−1E[m(h;Z)m(h;Z)T ][D(h)−1]T , whereD andm are functions ofh and ofh andZ,
respectively. If there is anh∗ ∈ H that satisfies

D(h) = E{m(h;Z)m(h∗;Z)T } for all h ∈ H, (2)

thenV (h) = V (h∗) + E(UUT ) whereU = D−1(h)m(h) −D−1(h∗)m(h∗), so thatV (h∗) is
the minimum variance.

Very oftenD = −E(Ġ), whereḟ denotes partial differentiation off with respect toθ, and
m isG itself, both evaluated at the trueθ. In this case,G(h∗;Z, θ) identified by Theorem 1 is
Godambe’s “quasi-score”. Of course, one must find an estimator based on the data alone that has
the standardized version[−E(Ġ)]−1G of this optimalG(h∗) as its influence function. This is
often achieved by replacingh in the estimating equation in the theorem by a consistent estimate
ĥ∗.

For a first application of Theorem 1, consider the “complete data problem” where(Y,X)
is known for all subjects. Under standard regularity assumptions, the class of influence func-
tions for all RAL estimators ofθ in the semiparametric model (1) is the collection of func-
tions of the formE

{
h(X)µ̇>(X; θ)

}−1
h(X)ε, whereh takes values in IRp (Chamberlain 1987;

van der Vaart 1998,§§25.28, 25.66). Here it is further assumed thath ∈ H for which both
E(hµ̇>) and E(hh>ε2) exist and are nonsingular. Since their elements differ only by multi-
plication by a nonsingular constant matrix, this class of estimating functions is identical with
the classG =

{
G(h;Z) = h(X)ε : h ∈ H

}
that satisfies the conditions of the theorem with

D = −E(Ġ) = E
{
h(X)µ̇>(X; θ)

}
andm = G. Applying criterion (2) leads immediately to

E
{
h(µ̇> − h∗>ε2)

}
= 0 for all h ∈ H and the conclusionh∗(X) = µ̇(X; θ)/ var(Y |X). The

efficient score and the efficiency bound for the complete data problem are thusG∗C = h∗ε and

{var(G∗C)}−1 =
[
E
{
µ̇(X; θ)µ̇>(X; θ)/ var(Y |X)

}]−1
,

respectively (Chamberlain 1987; van der Vaart 1998,§25.58).
Having characterized the set of influence functions for the complete data problem, results

of Robins, Rotnitzky & Zhao (1994, Propositions 8.1(c2) and 8.3) and van der Vaart (1998,
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Lemma 25.41 and Example 25.43) yield a similar characterization of influence functions for
the corresponding missing-at-random problem. Whenπ is known, the influence function of an
arbitrary RAL estimator can be expressed in the form

G1(h, φ) =
R

π
h(X)ε −

R− π

π
φ(S,X), (3)

whereφ is an arbitrary function ofS andX andh ∈ H. For fixedh, the choice ofφ for which
G1 has minimum variance isφ(S,X) = h(X)E(ε |S,X). Whenπ is unknown, the influence
functions of all RAL estimators ofθ are thoseG1(h, φ) which satisfy the additional restriction

E

{
G1(h, φ)

R− π

π
d(S,X)

}
= 0,

whered(S,X) is an arbitrary real function ofS andX. This follows from the fact that functions
of the form(R − π)d(S,X)/π constitute the score functions from one-dimensional parametric
submodels ofR (Robins, Rotnitzky & Zhao 1994; van der Vaart 1998,§25.43). Simple calcula-
tion shows that this restriction also leads toφ = h(x)E(ε |S,X). Thus the influence function of
any RAL estimator forθ whenπ is unknown, or of the optimal RAL estimator whenπ is known,
takes the form

G(h;Z) =
R

π
h(X)ε −

R− π

π
h(X)E(ε |S,X), (4)

wherehε is an influence function for the complete data problem. Expanding the class to include
all h ∈ H, we apply Theorem 1 in the same manner as before to determine the optimal influence
function by identifying thath for which the correspondingG has minimum variance in the class
of functions (4). The detailed calculation is in the Appendix.

THEOREM 2. The efficient score function forθ is

G∗ = G(h∗, φ∗) = h∗(X)

{
R

π
Y −

R− π

π
E(Y |S,X) − µ(X; θ)

}
≡ h∗(X)ε∗

with h∗(X) = µ̇(X; θ) var−1(ε∗ |X) andφ∗ = h∗(X)E(ε |S,X), regardless of whetherπ is
known or not. The semiparametric efficiency bound isvar−1G∗ where

varG∗ = E

[
µ̇(X; θ)

{
var(ε |X) + E

(
1− π

π
var(ε |S,X)

∣∣∣ X)}−1

µ̇>(X; θ)

]
. (5)

It is not surprising thatG∗ is the same whetherπ is known or not. SinceY is missing at
random, the likelihood ofR factorizes from the likelihood of(Y, S,X), whence the parameters
π and(θ, η) are orthogonal (Little& Rubin 1987; Robins, Rotnitzky & Zhao 1994). Whenπ = 1,
the expression for the information bound in Theorem 2 reduces to that for the complete data case
derived above. Otherwise the second term inside the inner braces in (5),A(X) ≡ E

{
(1 − π)

var(ε |S,X)/π |X
}

, quantifies the efficiency loss due to failure to observe the true outcomes
for the nonvalidated subset. It may be used to evaluate the amount of information inS or to
compare the quality of different auxiliary outcomes. WhenS is a perfect outcome, i.e.,S = Y ,
var(ε |S,X) = 0 so thatA(X) = 0. WhenS is independent ofY givenX, var(ε |S,X) =
var(ε |X), thusA(X) = var(ε |X)E{(1− π)/π |X} and

varG∗ = E
{
µ̇(X; θ)E−1(1/π |X) var−1(ε |X)µ̇>(X; θ)

}
.

The fact thatvar−1 G∗ is the semiparametric efficiency bound in this case can be easily shown
as follows. ObserveE(ε |S,X) = E(ε |X) = 0, so that class (4) reduces toG(h;Z) =
Rh(X)ε/π. A straightforward application of Theorem 1 leads to

h∗(X) = µ̇(X; θ)E−1(ε2/π |X) = µ̇(X; θ)E−1(1/π |X) var−1(ε |X).
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As another special case (Tenenbein 1970), suppose we are interested in estimating disease
prevalenceP(Y = 1) in the absence of covariates, i.e.,Y is binary andX ≡ 1. A simple
random sample of sizen is taken to measureY while a binaryS is available for allN subjects.
Straightforward calculation with the aid of Lemma 2(a) in Tenenbein (1970) leads toA(X) =
1 − K whereK, the square of the correlation coefficient betweenY andS, was termed the
“reliability” of S. Substitution ofn/N for π in (5), and division by the sample sizeN , leads to
the asymptotic variance for̂P(Y = 1) presented in formula (5.3) of Tenenbein (1970).

3. SEMIPARAMETRIC EFFICIENT ESTIMATION WHEN S AND X ARE DISCRETE

SinceG∗ involves the unknown nuisance quantitiesvar(ε∗ |X) andE(Y |S,X), we estimateθ
using estimated score equations

n∑
i=1

Ĝ∗i =
n∑
i=1

ĥ∗(Xi)

{
R

πi
Yi −

Ri − πi
πi

Ê(Y |Si, Xi)− µ(Xi; θ)

}
= 0. (6)

Here h∗(Xi) and E(Y |Si, Xi) in G∗ are replaced by empirical estimates, which is feasible
whenS andX are discrete and of moderate dimensionality. Due to MAR,E(Y |S,X) can be
consistently estimated from sample averages in a stratified validation subsample,

Ê(Y |S,X) =

n∑
i=1

RiYiI(Si = S,Xi = X)
/ n∑

i=1

RiI(Si = S,Xi = X).

For givenθ, denote

ε̂∗i =
Ri
πi
Yi −

Ri − πi
πi

Ê(Y |Si, Xi)− µ(Xi; θ),

thenvar(ε∗ |X) can be consistently estimated using

v̂ar(ε∗ |X) =

n∑
i=1

I(Xi = X)ε̂∗2i

/ n∑
i=1

I(Xi = X).

Note thatÊ(Y |S,X) is the predicted value from the regression ofY on S andX under a
saturated model, and that̂var(ε∗ |X) is likewise the predicted value from the saturated regression
of ε∗2 onX. In other words, whenS andX are discrete, we can always specify correct models
for the unknown functions.

Theorem 3 below states the asymptotic properties ofθ̂. Theorem 4 notes that̂θ may be
obtained as a Horvitz–Thompson estimator with estimated weights. The proofs of these theorems
are sketched in the Appendix.

THEOREM 3. There exists a unique consistent solutionθ̂ to equation(6). The asymptotic vari-
ance ofθ̂ attains the semiparametric efficiency bound, which can be consistently estimated by( n∑

i=1

Ĝ∗i Ĝ
∗>
i

)−1

.

THEOREM 4. Equation(6) can be written as
n∑
i=1

Ri
π̂i
ĥ∗(Xi)εi = 0 (7)

with

π̂i =

∑n
j=1 I(Rj = 1, Xj = Xi, Sj = Si)∑n

j=1 I(Xj = Xi, Sj = Si)
.
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WhenX is multinomial and written as a vector of 0/1 indicators that index, for example,
all possible combinations of levels of discrete covariates, any function ofX including ĥ∗(X)

can be written asCX, whereC is a constant matrix. Thus, whenS is also discrete,̂θ from the
estimating equation

n∑
i=1

Ri

π̂i
Xiεi = 0, (8)

with π̂ as in Theorem 4, asymptotically achieves the semiparametric efficiency bound.
Returning to the problem of estimating disease prevalence considered at the end of Sec-

tion 2, Tenenbein (1970, formula 4.1) derived the nonparametric maximum likelihood estimator
of prevalence whenY was measured on a simple random sample. An easy calculation shows
that his estimator equals that based on equation (8).

Equation (7) provides a connection between the SEE and the mean-score estimator of Pepe,
Reilly & Fleming (1994). Suppose for now that the relationship betweenY andX is specified by
a fully parametric modelPθ(Y |X) and let ˙̀

θ = Ṗθ(Y |X)/Pθ(Y |X) be the likelihood score.
The mean score method for estimatingθ replacesE( ˙̀

θ |S,X) by Ê( ˙̀
θ |S,X) in the observed

data score function

n∑
i=1

Ri ˙̀
θ(Yi |Xi) + (1 −Ri)E

{
˙̀
θ(Y |Xi) |Si, Xi

}
and uses the result as an estimating function ofθ. For the auxiliary outcome problem, substituting
any unbiased estimating function of the formh(X)ε = h(X){Y − µ(X; θ)} for ˙̀

θ leads, owing
to the missing-at-random assumption, to a class of unbiased estimating functions

n∑
i=1

Rih(Xi)εi + (1− Ri)E
{
h(X)ε |Si, Xi

}
= 0.

WhenE(Y |S,X) is replaced by the empirical estimatêE(Y |S,X,R = 1) for S andX dis-
crete, the resulting estimating equation may be shown to equal

n∑
i=1

Ri

π̂i
h(Xi)εi = 0, (9)

with π̂ as in Theorem 4. Denote the resulting estimator asθ̂eh, which, for convenience, we still
call the mean-score estimator. Denote the one solving the same equation but with known weights
πi asθ̂h, which is the classical Horvitz–Thompson estimator.

A study of the asymptotic variance ofθ̂eh provides insight into the efficiency superiority of
the SEE. Note that̂πi is the maximum likelihood estimate from a saturated regression model
for π. Consequently, for givenh(X), a straightforward application of a result in Pierce (1982)
gives that

Avar θ̂eh = A−1
11 var

{
Rh(X)ε

π
−
R− π

π
h(X)E(ε |S,X)

}
A−1

11 , (10)

whereA11 = E{h(X)µ̇>(X; θ)}. Following exactly the same arguments as the proof of The-
orem 2 in the Appendix,h∗(X) = µ̇(X; θ) var−1(ε∗ |X) leads to the smallestAvar θ̂eh, with
θ̂eh∗ being the SEE. In the case of logistic regression, the original mean-score estimator of Pepe,
Reilly and Fleming usesh(X) = X whereas the SEE usesh(X) = X var(ε |X)/ var(ε∗ |X).

By minimizing certain elements ofvar−1 G∗, optimal sampling fractions at each(S,X)
level could be calculated under the restriction of a fixed overall validation proportion or fixed
budget for purposes of study design. Unfortunately, no closed-form solution for the optimal
π exists. They are defined only by a system of equations of the same dimension as(S,X).
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One could assume a parametric model for the joint distribution of(Y, S,X), for example, and
then determine by numerical means the optimal sampling fractions for estimation of a specific
regression coefficient at various values for the parameters.

4. EXAMPLES AND SIMULATION STUDIES

Clayton, Spiegelhalter, Dunn & Pickles (1998) simulated a study motivated by the Medical Re-
search Council Multicenter Cognitive Function and Aging Study where the outcome was demen-
tia (MRC-CFAS 1998). The study aimed to estimate both prevalence, the probability of having
dementia at the first of two visits, and incidence, the probability of having dementia at the second
visit for persons without dementia initially. Here we consider only prevalence. While cognitive
function was measured on the entire cohort using the Mini-Mental State Examination (MMSE),
dementia was diagnosed using a “gold standard”instrument on a subset of patients selected by
stratified random samplingaccording to the MMSE at three levels and age at two.

TABLE 1: Study design and sampling fractions.

Number of Subjects Sampling

Age(years) MMSE Study cohort Subsample fraction

65–74 0–21 291 291 1

22–25 950 220 0.232

26–30 3,759 386 0.103

75+ 0–21 1,037 496 0.478

22–25 1,486 208 0.140

26–30 2,477 179 0.072

Total 10,000 1,780 0.178

For each of the six strata, and using the first of five simulated data sets kindly provided by the
authors, Table 1 shows the number of subjects in the study cohort, the number in the validation
subsample and the corresponding sampling fraction. Readers are referred to the original paper
for the detailed study design. We noted substantial differences between three of the observed
sampling proportions shown in Table 1 and the theoretical proportions apparently employed in
the simulation (see Table 2 of Clayton, Spiegelhalter, Dunn & Pickles 1998). Thus, for illustrative
purposes, the six observed sampling proportions in Table 1 determined the true sampling weights.
Data are presented in Table 2, where, within each age-sex-MMSE stratum,nv1 (nv0) denotes to
the number of diseased (nondiseased) in the validation subsample andnnv denotes to the number
in the nonvalidated subsample.

We fitted a logistic regression model for prevalence with the main effects for age in six groups
and sex, and with the three categories of MMSE continuing to serve as the discrete auxiliary out-
come. Thus 36 estimated or empirical weights were generated by the saturated model forπ. The
original mean-score estimator and the Horvitz–Thompson estimator were both obtained from
equation (9) withh(X) = X, the former with estimated and the latter with true weights. The
SEE was obtained by solving equation (7) withĥ∗(X)ε = X{var(ε |X)/v̂ar(ε∗ |X)}ε. The
standard errors were calculated based on the asymptotic variance formulas for each estimator.
The results shown in Table 3 also include those from a naive logistic regression analysis of just
the data in the validation subsample, without consideration of the stratified sampling design.

For the estimation of the sex coefficient, the SEE method led to a 14.3% reduction in the
variance compared with the mean-score, and both were more precise than the Horvitz–Thompson
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estimation (35.7% and 25.0% reduction in variance, respectively). For the estimation of the age
stratum coefficients, although the mean-score improved on the Horvitz–Thompson estimation,
the SEE did not. Complete case analysis using the validation subsample alone yielded apparently
biased estimates. Robins & Wang (1998) demonstrated more substantial gains in efficiency of
SEE over the Horvitz–Thompson approach for a more complicated investigation of the effects of
age and sex on the incidence of dementia that involved a nonmonotone missingness pattern.

TABLE 2: Subject distribution by age-sex-MMSE in the validated and nonvalidated subsamples.

MMSE

0–21 22–25 26–30

Age(years) nv1 nv0 nnv nv1 nv0 nnv nv1 nv0 nnv

65–69 12 38 0 1 35 137 0 101 876

70–74 22 52 0 1 30 141 0 74 680

Males 75–79 13 25 53 3 28 198 0 52 528

80–84 23 18 30 1 34 153 1 17 323

85–89 21 17 37 1 6 35 0 6 77

90+ 12 10 23 0 2 23 0 3 27

65–69 9 60 0 1 54 207 0 107 962

70–74 28 70 0 5 93 245 1 103 855

Females 75–79 24 56 87 6 49 349 0 59 770

80–84 79 56 145 3 48 330 0 30 409

85–89 41 41 100 3 19 147 0 10 139

90+ 37 23 66 0 5 43 0 1 25

We performed simulation studies (i) to compare the relative efficiency of SEE versus the
mean-score method; (ii) to investigate the performance of(

∑
i Ĝ
∗
i Ĝ
∗>
i )−1 as the asymptotic

variance estimator of the SEE in Theorem 3; (iii) to investigate (10) as an alternative variance
estimator to that proposed by Pepe, Reilly & Fleming (1994) for the mean-score estimator; and
(iv) to investigate how informative the auxiliary outcome must be to increase precision substan-
tially. We assumed thatX took three values1/2/3 with probabilities0.4/0.5/0.1, respectively.
Y was binary generated from the logistic regression model

log
{

P(Y = 1 |X)/P(Y = 0 |X)
}

= θ0 + θ1X

with θ0 = −2.5. Two values forθ1 were used, namely0.0/1.0. S was a nondifferentially
misclassified version ofY : P(S = 1 | Y,X) = P(S = 1 | Y ), and we set sensitivity to
P(S = 1 | Y = 1) = 0.8. Three values for the specificityP(S = 0 | Y = 0), 0.55/0.75/0.90,
were used, corresponding to whether the auxiliary outcome was weakly/moderately/strongly in-
formative. We sampledS andX for 5000 subjects, and then sampledY for subsets of size
nv=250/500/750 following a “balanced design” (Breslow & Cain 1988) in which the number
of the second-phase subjects in cells defined byS andX were approximately equal. Each sce-
nario was simulated 1000 times. The results are listed in Tables 4 and 5 corresponding to the
two values ofθ1. “Evar” refers to the empirical variance, “est(var)” to the averaged estimated

variance using the asymptotic variance formula,θ̂1 to the average of the estimatorsθ̂1, and “CP”
to the 90% coverage probability. The efficiency gain of the SEE over the mean-score estimator,
obtained by subtracting one from the ratio of empirical variances for the mean-score and SEE, is
shown in Table 6.
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Both the SEE and the mean-score estimators were reasonably unbiased, whereas the naive
complete data estimator was not. For SEE and mean-score, the empirical variances were usually
close to the average estimated variances and the coverage probabilities were reasonably close
to the nominal level. Exceptions occurred with the smallest validation samples, where standard
errors were underestimated and coverage probabilities were below nominal level. In all scenarios,
the SEE performed better than the mean-score method and sometimes resulted in very important
efficiency gains. In other simulations (not reported here), we observed little advantage in the
efficiency of the SEE over the mean-score method.

TABLE 3: Estimates and standard errors for age and sex effects.

Age(years)

70–74 75–79 80–84 85–89 90+ Sex

Complete: validation sample only

θ̂ 0.833 1.070 2.189 2.424 2.936 0.099

sd 0.253 0.264 0.242 0.264 0.296 0.136

Horvitz–Thompson estimation (true weights)

θ̂ 1.086 1.658 2.711 3.201 3.883 0.331

sd 0.335 0.341 0.313 0.334 0.383 0.187

Mean score method (estimated weights)

θ̂ 1.081 1.732 2.648 3.182 3.742 0.283

sd 0.326 0.320 0.300 0.308 0.310 0.162

Semiparametric efficient estimation

θ̂ 1.152 1.810 2.766 3.275 3.809 0.289

sd 0.336 0.331 0.305 0.319 0.322 0.150

5. DISCUSSION

We studied semiparametric efficient estimation for regression parameters when the true outcome
is missing at random but auxiliary outcomes are available for all subjects. Optimal estimating
function theory was used to derive the efficient score function, which takes a simple, explicit form
for this problem. When the auxiliary outcome and covariates are both discrete, we demonstrated
that the optimality of the SEE is achieved partly by efficiently estimating the weights in the
Horvitz–Thompson estimator and partly by minimizing the asymptotic variance of a class of
Horvitz–Thompson estimators with efficiently estimated weights.

Our simulation studies suggested that the SEE can result in important efficiency gains over
the original mean-score estimator of Pepe, Reilly & Fleming (1994), that the inverse of the es-
timated vector product of the efficient score function performs well as an estimator of the semi-
parametric efficiency bound, and that (10) performs well as an alternative asymptotic variance
estimator for the mean-score method. Very often, limited resources only allow a small valida-
tion sample. Then, even moderately informative auxiliary outcomes can result in a meaningful
efficiency gain. Standard methods for model checking apply. For example, one can group the
X data and fit preliminary models with separate regression parameters for each group, or addX
terms to check for linearity and the absence of interactions.
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TABLE 4: Simulation results (θ1 = 0).

nv = 250 nv = 500 nv = 750

Specificity 0.55 0.75 0.90 0.55 0.75 0.90 0.55 0.75 0.90

Complete: validation sample only

θ̂1 0.005 0.009 0.014 0.007 0.005 -0.031 -0.001 0.008 -0.133

Evar 0.094 0.060 0.038 0.048 0.029 0.018 0.027 0.020 0.013

est(var) 0.091 0.062 0.037 0.044 0.030 0.019 0.029 0.020 0.015

90% CP 0.891 0.901 0.894 0.889 0.906 0.902 0.915 0.899 0.717

Semiparametric efficient estimation

θ̂1 -0.003 0.007 0.003 0.006 0.003 -0.006 -0.002 0.006 0.008

Evar 0.129 0.077 0.052 0.051 0.034 0.026 0.029 0.022 0.019

est(var) 0.100 0.066 0.046 0.044 0.033 0.025 0.029 0.022 0.019

90% CP 0.859 0.872 0.852 0.871 0.877 0.874 0.899 0.895 0.893

Mean score method

θ̂1 0.001 0.017 -0.001 0.008 0.007 -0.010 -0.009 0.004 0.010

Evar 0.136 0.091 0.068 0.064 0.045 0.035 0.039 0.029 0.022

est(var) 0.124 0.085 0.059 0.059 0.043 0.032 0.040 0.029 0.022

90% CP 0.876 0.867 0.839 0.892 0.899 0.874 0.900 0.899 0.892

In the data example we provided, we observed that the mean-score method performed well
for estimation of the age stratum effects. In fact, we observed the same phenomenon in many of
the simulation studies, especially those involving relatively constant sampling fractions leading
to “unbalanced”validation samples. The relative efficiency of the mean-score and SEE methods
could be affected by many factors including the sampling scheme, the true regression association
and the nuisance aspects of the probability distribution. However, we were unable to reach
general conclusions about the circumstances when semiparametric efficient estimation resulted
in important efficiency gains, and further work is warranted on this aspect.

The optimal estimating function approach we used for calculating the efficient score function
for Euclidean parameters is a general approach applicable to many semiparametric problems.
Theorem 1 is particularly useful for the general data-missing-at-random problem considered by
Robins, Rotnitzky & Zhao (1994). Once the influence functions for RAL estimators are identi-
fied for the complete data problem, those for the problem with a monotone missingness pattern
are identified by their equation (38). Application of Theorem 1 in this article, i.e., solving equa-
tion (2) forG∗, then leads to a straightforward calculation of the efficient score function.

We focused on the auxiliary outcome problem when bothS andX are discrete, thus ex-
tending the work of Alonzo, Pepe & Lumley (2003) on various strategies for the estimation of
disease prevalence in the absence of covariates. When(S,X) take many discrete values and the
validation sample is small, fitting saturated models toE(Y |S,X) andvar(ε∗ |X) may not be
feasible due to the lack of validation observations at some specific(S,X) values. In this case,
it may be helpful to pool adjacent values for purposes of estimating the weights, provided that
this still results in a correct model forπ. As an example, for the dementia data considered in
Section 4, one could pool adjacent age categories within the two broad age groups specified in
Table 1. When(S,X) have continuous components, consistent estimation ofE(Y |S,X) and
var(ε∗ |X) in equation (6) is even more challenging due to the lack of knowledge of their cor-
rect functional forms. Semiparametric efficient estimation may still be achieved, however, if
they are indeed consistently estimated (van der Vaart 1998,§25.54). One compromise approach
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is to specify working parametric models for these functions. If correctly specified, the estimator
based on equation (6) is semiparametric efficient. If not, since (6) is still unbiased, the estimator
is consistent though not efficient. See Robins, Rotnitzky & Zhao (1994) for full discussion of this
aspect. Y. Chen (2000) proposed a robust imputation approach when the validation subsample
of the outcome is obtained via simple random sampling. It uses a possibly incorrect “working
model” forE(Y |S,X) to imputeY for subjects in the nonvalidated subsample, and is easily im-
plemented regardless of the dimensionality ofS andX. J. Chen (2002) extended the approach
to the situation where the outcome is missing at random.

TABLE 5: Simulation results (θ1 = 1.0).

nv = 250 nv = 500 nv = 750

Specificity 0.55 0.75 0.90 0.55 0.75 0.90 0.55 0.75 0.90

Complete: validation sample only

θ̂1 0.887 0.735 0.531 0.884 0.734 0.523 0.880 0.745 0.520

Evar 0.032 0.028 0.024 0.014 0.014 0.012 0.010 0.009 0.007

est(var) 0.032 0.029 0.026 0.016 0.014 0.013 0.011 0.010 0.009

90% CP 0.804 0.509 0.104 0.769 0.286 0.007 0.674 0.150 0.000

Semiparametric efficient estimation

θ̂1 1.016 1.013 1.018 1.011 1.006 1.006 1.003 1.015 1.003

Evar 0.033 0.024 0.020 0.015 0.014 0.011 0.011 0.009 0.007

est(var) 0.031 0.024 0.018 0.016 0.012 0.010 0.011 0.008 0.007

90% CP 0.889 0.889 0.863 0.901 0.893 0.873 0.884 0.893 0.913

Mean score method

θ̂1 1.012 1.003 1.013 1.007 1.005 1.005 1.000 1.014 1.002

Evar 0.040 0.032 0.025 0.020 0.018 0.013 0.014 0.011 0.008

est(var) 0.042 0.031 0.023 0.021 0.016 0.012 0.014 0.011 0.009

90% CP 0.910 0.895 0.862 0.909 0.885 0.890 0.900 0.891 0.915

TABLE 6: Efficiency gain of the SEE over mean-score (%).

Specificity θ1 = 0 θ1 = 1.0

0.55 5.4 21.2

nv = 250 0.75 18.1 33.3

0.90 30.7 25.0

0.55 25.5 33.3

nv = 500 0.75 32.4 28.6

0.90 34.6 18.2

0.55 34.5 27.3

nv = 750 0.75 31.8 22.2

0.90 15.8 14.2
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APPENDIX: PROOFS FOR THEOREMS

Proof of Theorem 2. We apply Theorem 1 to the class of estimating functionsG1 in equation
(3) indexed byh andφ. With Q = h(X)ε andQ∗ = h∗(X)ε, let ˙̀

θ be the likelihood score for
the complete data problem, andUm = (R,RY, S,X) be the observed data. Then the likelihood
score for the auxiliary outcome problem is˙̀m

θ = E( ˙̀
θ |Um) (van der Vaart 1998, Th. 25.40), so

thatE
{
G( ˙̀m

θ )>
}

= E
{
h(X)µ̇>(X; θ)

}
. Further,

EGG∗> = E

(
1

π
QQ∗>

)
− E

(
1− π

π
Qφ∗>

)
− E

[
1− π

π
φ{E(Q∗ |S,X) − φ∗}>

]
.

By Theorem 1, we search forh∗ andφ∗ such that for all(h, φ), E
{
G(̇`mθ )>

}
= E(GG∗>). Since

φ is arbitrary, we haveE[(1− π)φ{E(Q∗ |S,X)− φ∗}>/π] = 0, so thatφ∗ = E(Q∗ |S,X) =
h∗(X)E(ε |S,X). Substitutingφ∗ back into equationE{G( ˙̀m

θ )>} = E(GG∗>) leads to

E

{
1

π
h∗(X)ε2 −

1− π

π
h∗(X)εE(ε |S,X) − µ̇(X; θ)

∣∣∣ X} = 0

sinceh(X) is arbitrary. Thus,

h∗(X) = µ̇(X; θ)E

{
1

π
ε2 −

1− π

π
εE(ε |S,X)

∣∣∣ X}−1

= µ̇(X; θ) var−1

{
R

π
ε−

R− π

π
E(ε |S,X)

∣∣∣ X}.
This is the desired result. The fact thatφ∗ = E(Q∗ |S,X) = h∗(X)E(ε |S,X) shows thatφ∗

already satisfies (3) and henceG∗ is the same ifπ is completely unknown. Whenπ is specified by
a parametric model with an unknown Euclidean parameterα, letTα = {π̇(α)} be the set spanned
by the score functions ofα. The influence functions for all RAL estimators are thoseG1(h, φ)
that satisfyE

{
G>1 (h, φ)π̇(α)

}
= 0. SinceTα is a subset of all functions(R−π)d(S,X)/π, this

set of influence functions is larger than that whenπ is completely unknown, and smaller than
that whenπ is completely known. Consequently, the efficient score function must be the same
as in the other two situations.

Proof of Theorem 3. Let e(S,X; γ) be a saturated model forE(Y |S,X), andv(X; τ ) be a sat-
urated model forvar(ε∗ |X). Let ė(S,X; γ) = ∂e(S,X; γ)/∂γ andv̇(X; τ ) = ∂v(X; τ )/∂τ .
Then θ̂ can be obtained from the joint solution to the following three unbiased estimating equa-
tions:

n∑
i=1

µ̇(Xi; θ)v
−1(Xi; τ )

[
Ri

πi
εi −

Ri − πi
πi

{
e(Si, Xi; γ)− µ(Xi; θ)

}]
= 0,

n∑
i=1

Riė(S,X; γ)
{
Yi − e(Si, Xi; γ)

}
= 0,

n∑
i=1

v̇(Xi; τ )

[[
Ri

πi
εi −

Ri − πi
πi

{
e(Si, Xi; γ) − µ(Xi; θ)

}]2

− v(Xi; τ )

]
= 0.

Denote ψ = (θ, τ, γ), and write this set of three estimating equations jointly as∑n
i=1 Ui(ψ) = 0. Then existence and uniqueness of a consistent solutionψ̂ follow from

Foutz (1977) under the regularity conditions: (i)∂Ui(ψ)/∂ψ exists and is continuous on an open
setΨ in the Euclidean space of the same dimension asψ, withψ ∈ Ψ; (ii) n−1

∑n
i=1 ∂Ui(ψ)/∂ψ

is nonsingular with probability going to 1 asn increases; (iii)n−1
∑n
i=1 ∂Ui(ψ)/∂ψ converges

to a fixed matrixM(ψ) uniformly in an open neighbourhood ofψ. Asymptotic normality fol-
lows by direct Taylor expansion. In particular,θ̂ achieves the semiparametric efficiency bound
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since the expected derivative matrix of the joint estimating function with respect to(θ, γ, τ ) is
block diagonal. Central to this proof is the fact that the saturated modelsv(x; τ ) ande(s, x; γ)
are correct models whenS andX are discrete.

Proof of Theorem 4. Let V denote the validation subsample and letV (Si, Xi) denote the collec-
tion of subjects inV with S = Si andX = Xi. Let n(Si, Xi) [nv(Si, Xi)] denote the number
of subjects in the whole [validation] sample withS = Si andX = Xi. For a generalh(X),

n∑
i=1

Ri − πi
πi

h(Xi)Ê(ε |Si, Xi) =

n∑
i=1

Ri − πi
πi

h(Xi)

∑
j∈V (Si,Xi)

εj

nv(Si, Xi)

=

n∑
i=1

∑
j∈V (Si,Xi)

(Ri − πi)h(Xi)εj
πinv(Si, Xi)

=
∑
j∈V

h(Xj)εj

n∑
i=1

(Ri − πi)I(Sj = Si, Xj = Xi)

πinv(Si, Xi)

=
∑
j∈V

h(Xj)εj
πjnv(Sj , Xj)

n∑
i=1

(Ri − πi)I(Sj = Si, Xj = Xi)

=
∑
j∈V

h(Xj)εj
nv(Sj , Xj) − πjn(Sj , Xj)

nv(Sj , Xj)πj

=

n∑
i=1

Ri
πi
h(Xi)εi −

n∑
i=1

Rin(Si, Xi)

nv(Si, Xi)
h(Xi)εi.

Substituting this back into equation (6) withh(X) replaced bŷh∗(x), leads to the theorem.
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