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Recap & Examples on Influence Functions

Recall: an RAL estimator based on iid missing data

from complete data (Ri, Zi) ≡ (Ri, Xi, Yi) satisfies

√
n (β̂ − β)

P≈ 1√
n

n∑
i=1

φ(Ri, Zi)

The function φ(Ri, Zi) is called the influence

function and for the Regular part of RAL must satisfy

the properties

φ(R,Z) ⊥ cls(Sη(R,Z)) , E(φ(R,Z)Sβ(R,Z)tr) = I

where Sβ, Sη are scores resp. for the parameters β of

interest and the nuisance parameters η defined through

d

dt
{log f (W, (β0, η0) + tv)}

directional derivatives on finite-dim submodels, where

W denotes the observable data.

The use of influence functions is that

a.var(β̂) = E(φ(R,Z)φ(R,Z)tr)

and that (apart from scaling by constant matrix) the

function φ(R,Z, β, η) provides an estimating equa-

tion for β when η = η̂ is substituted.
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Examples with Two-level Missingness

Thm. 10.1 in Tsiatis’ book states that if the observable

data are Z = (X, Y ) = (X(1), X(2), Y ) when R = 1

and a subvector Z(1) when R = 0, and if coarsening at

random condition P (R = 1 |Z) = π(Z(1)) holds, then

optimal (smallest variance for fixed φF ) influence

functions are of the Augmented IPWCC form

RφF (Z)

π(Z(1))
− R− π(Z(1))

π(Z(1))
E(φF (Z) |Z(1))

In the special case (restricted moment outcome model)

where E(Y |X) = µ(X, β), the optimal (unscaled)

complete-data influence functions φF are

φF (Y,X) = A(X) (Y − µ(X, β))

Optimal A(X) in the case of no missing data is

A∗(X) = (−∇
β
µ(X, β)) (Var(Y |X))−1)

Note: in coarsening-model notation CAR = MAR,

and C = ∞ ⇔ R = 1, C = 1 ⇔ R = 0.
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AIPWCC Examples

(I). The optimal influence function the case of 2-level

missingness

RφF (Z)

π(Z(1))
− R− π(Z(1))

π(Z(1))
E(φF (Z) |Z(1))

is simply (R/π(Z(1)))A(X) (Y − µ(X, β) with no

‘Augmented’ term when Z(1) = g(X), because

E(Y − µ(X, β) |X, R) = E(Y − µ(X, β) |X) = 0

This can occur either when missingness is by design

or when π(·) = π(·, γ) must be estimated. applicable to

surveys e.g. when Z(1) = X(1).

(II). Tsiatis gives the different (biostatistical) example

Z = (Y,X), Z(1) = (Y,X (1)), and then the term

E(A(X) (Y − µ(X, β) |Y, X (1) ) ̸= 0

Optimal A is generally not be the same A∗(X) as before.

Finding it will involve an integral equation because the

variance of the influence function involves A(X)V (X)A(X)tr

minus another variance of conditional-expectation term

involvingA(X), as in Robins, Rotnitzky and Zhao (1994).
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Further Remarks

(A) The introduction of AIPWCC Estimators in Robins,

Rotnitzky and Zhao (1994) was in NMAR-data settings,

i.e. situations with informative missingness. That

is not the situation on (II) above; but there also the

Augmented estimating equation terms are important.

That will be the topic of the next presentation, on

March 3, by Xia Li.

(B) Informative missingness models cannot be nonpara-

metrically tested and identified, because they express joint

relationships between variables that are not seen together,

such as (Y,X(2)) in the survey example in case R = 0.

(C). Although the Augmentation term need not and even

should not be included in MAR settings if efficiency is

the only concern, we saw last Fall that estimating equa-

tions with the term can be model-robust (‘doubly ro-

bust ’) to misspecifications of the π(Z(1), γ) or µ(X, β)

models while the efficient influence function with only the

IPWCC term is not. Papers of Z. Tan and later chap-

ters of Tsiatis’ book address the relationship of double

robustness and augmented estimating equation terms.
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Other Topics to present later:

Causal Inference (Rubin 1974) and Propensity

Score Matching (Rosenbaum and Rubin 1983) are

general and important statistical topics which have led to

semiparametric statistical methods in econometrics and

biostatistics. A paper where these topics enter, with all

references in its bibliography, is Hirano, Imbens and Rid-

der (2003) now posted to the RIT web-page.

Sufficient Dimension Reduction is already men-

tioned on the RIT web-page.
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