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Abstract: Randomized two-group clinical survival experiments now commonly
allow at least one interim look, enabling possible early stopping to meet ethical
concerns. Various authors have also studied the possibility of interim design
modifications to adapt to unexpected accrual or control-group mortality rates.
This paper formulates trial design as a decision theoretic problem with a finite
number of interim looks and a large class of loss functions, in the setting of
a statistic with the asymptotic behavior of Brownian motion with drift, as
in Leifer and Slud (2002). A more general action space can specify adaptive
designs allowing the option of continued followup without new accrual past an
interim look, as was introduced in Koutsoukos, Rubinstein and Slud (1999).
An optimal two-look design is displayed in the first formulation, and a seven-
look design in the second, and both types of adaptation are given a unified
decision-theoretic motivation.
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1.1 Introduction

Group sequential designs are designs in which experimental data on two-group
treatment comparisons can be scrutinized at a finite number of interim look-
times with the possibility of early termination of the experiment in such a
way as to maintain a prescribed experimentwise significance level and power
against a fixed alternative. Such designs first appeared for two-group random-
ized clinical trials with normally distributed quantitative responses in the mid-
1960’s. By the late 1970’s, methods had appeared which took explicit account
of the staggered entry, followup time, and delayed response of clinical trials
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with survival-time endpoints. By the early 1980’s, such methods were firmly
established theoretically. Tsiatis (1982) showed that the repeatedly computed
logrank-numerator statistic at a series of fixed scheduled interim look-times
would under standard conditions behave in large two-sample trials as a sequence
of independent-increment Gaussian variables, with mean 0 under the null hy-
pothesis H0 of no treatment effect and with steady positive drift proportional
to variance under local proportional-hazard alternatives. As the theory devel-
oped, look-times were allowed to be random (stopping-times for the observed
information process), and additional classes of statistics including weighted lo-
grank statistics (with weight functions also estimated from pooled two-group
Kaplan-Meier survival function estimators) were justified to be usable in the
same way as the logrank, although the logrank is the heavy practical favorite.

Slud and Wei (1982) showed how variance increments could be progressively
estimated while allowing early stopping by means of an α-spending schedule.
In a (one-sided) trial of sample size n, with the statistic Sk/

√
n calculated at

the k’th look-time tk, a threshold or boundary bk is used to stop the trial
early with rejection of H0 if Sk/

√
n ≥ bk, where bk is found inductively, in

terms of the estimated large-sample variance Vk of Sk/
√

n, to satisfy

αk = Pr(Sj/
√

n < bj for 1 ≤ j < k, Sk/
√

n ≥ bk) (1.1)

where the values α1, . . . , αK are prescribed and sum to the experimentwise
significance level α. The times at which interim looks might be taken can be
allowed to be random stopping-times, e.g., to be level-crossing times for the
proportional-hazard parameter’s information, which is proportional to the lo-
grank variance and thus also to the number of observed failure events. Moreover,
the choice of the specific value αk need not be made until the k−1th look-time
(Lan and DeMets 1983). The asymptotic theory underlying this extension was
given by Slud (1984) and other authors, establishing that under local (contigu-
ous) proportional-hazard alternatives the repeatedly computed logrank statistic
considered as a stochastic process behaves asymptotically in large samples like
a time-changed Brownian motion with drift. The history of these developments
from the viewpoint of trial design, along with practical recommendations on
the choice among early-stopping designs as of 1984, can be found in Fleming
et al (1984). The context of these results in the setting of repeated significance
testing within exponential families can be found in Siegmund (1985).

Later progress on the specification of early-stopping boundaries included
generalizations beyond our scope here (more general statistics, adjustment for
covariates, modified formulations of repeated significance testing, etc.), but also
developed optimization methods: Tsiatis and co-authors restricted attention to
parametrically restricted families of boundaries and computed the ones which
minimized expected trial duration over boundaries with prescribed size and
average power against specified alternatives; while Jennison (1987) undertook
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a brute-force (grid-search) computation of optimal boundaries in the sense of
minimizing a weighted linear combination of type-II error probabilities and
expected sample sizes over specified alternatives, for given significance level.

Clinical investigators often find at the times of interim looks in clinical trials
that planned accrual goals have not been met, or that due to noncompliance,
lower than expected tolerated doses, or better survival than expected in the
control group, power will be less than planned for against clinically meaningful
alternatives. For this and other, ethical, reasons, there has been a perceived
need for adaptive (group-) sequential trial designs accommodating flexibility in
accrual rates through the spacing of look times. However, the designs must ex-
plicitly take account of such flexibility: Proschan et al. (1992) nicely illustrate
the adverse effects on significance level of modifying look-time definitions and
other trial assumptions in mid-trial. Various authors (Bauer and Köhne 1994,
Proschan and Hunsberger 1995, and others cited in Burman and Sonesson 2006)
have proposed methods of accommodating design changes (usually in sample
size) after an interim look, resulting in procedures with valid experimentwise
significance levels based on weighted combinations of statistic-increments cal-
culated up to and after the design changes. But there is active controversy (see
Burman and Sonesson 2006, with discussion) concerning whether such adapta-
tions are a good idea, or are even ethical, considering the loss of power they
entail against the originally envisioned alternatives.

The accelerating pace of biomedical discovery due to the genomics revo-
lution, discussed by P.K. Sen (2006) in this volume, highlights the dramatic
opportunity costs from protracted clinical trials and from incorrect decisions
based on them. A principled statistical response should take account of those
costs, as well as the important ethical costs that arise from clinical trial errors.
The approach followed in this paper is decision-theoretic. We consider clinical
trial designs which ‘adapt’ to interim results subject to experimentwise type I
and II error probability constraints, in such a way as to minimize the expected
values of realistically structured loss functions.

This paper has three objectives: first, in Section 1.2, to describe the Bayesian
decision problem of Leifer and Slud (2002) incorporating multi-look trials with
general loss components, penalizing trial length and incorrect decisions as a
function of the treatment-group difference parameter ϑ; second (Section 1.3), to
describe how optimal decision procedures require later look-times and stopping-
boundaries to depend on earlier observed statistic values, especially in the two-
look case; and third, to describe a decision problem (in Sec. 1.2.2) motivating
new design elements including those of Koutsoukos et al. (1999) described in
Section 1.4, allowing group-sequential trials an option to stop accrual with or
without early stopping, while maintaining experimentwise significance level.



4 E. V. Slud

1.2 Decision Theoretic Formulation

Many theoretical results (Tsiatis 1982, Slud 1984, Siegmund 1985) justify that
the sequence two-sample (weighted-)logrank statistics calculated at interim
looks of a multi-look staggered-accrual clinical trial with survival endpoints
under local proportional-hazard alternatives (and also more general classes of
alternatives) is asymptotically equivalent in large datasets to sampled values
of a Wiener process with drift, X(t) = W (t) + ϑ t. Here ϑ is an unknown
real parameter quantifying positive or negative relative prognosis for treatment-
versus control-group patients in the trial. The natural time-scale for estimation
of the treatment difference parameter ϑ is information time (Siegmund 1985,
Andersen et al. 1993), i.e. the information about ϑ in the data up to time t.
Increments of time are transformed by this statistical time-scale, regarded as
a function of nuisance parameters under near-null alternatives (i.e., those with
ϑ ≈ 0 ). The nuisance parameters — all statistical parameters of the accrual,
censoring, and survival mechanisms of the trial other than ϑ — are assumed
to be consistently estimated at times of interim analysis of the data.

The objective of the trial is inference on ϑ to distinguish the null hypothesis
ϑ ≤ 0 against alternatives with ϑ > 0 : process data X(τj) may be observed
(only) at an increasing sequence of discrete times τj , 1 ≤ j ≤ K, with τj

allowed to be determined from (τi, X(τi), i < j) (and, possibly, auxiliary
randomizations independent of the data). The upper-bound K on the number
of look times is generally nonrandom and fixed, and the trial ends at the first
time τν for which either ν = K or τν+1 = τν , at which time a binary decision
χ ∈ {0, 1} is made as a function of all observable data (τi, X(τi), i ≤ ν).
When actions (τi, 1 ≤ i ≤ ν) and χ have been taken, losses are measured in
terms of τν = t and χ = z ∈ {0, 1}, when ϑ is the correct alternative (drift)
parameter assumed distributed according to a prior distribution π on R, by

L(t, z, ϑ) =

{
c1(t, z, ϑ) + z c2(t, ϑ) + (1− z) c3(t, z, ϑ), if ϑ ≤ 0 ,
c1(t, z, ϑ) + (1− z) c2(t, ϑ) + z c3(t, z, ϑ), if ϑ > 0 .

(1.2)

Here z denotes the indicator of rejection of the null hypothesis H0 : ϑ ≤ 0.
The functions c1, c2, and c3 represent respectively the costs of trial duration;
of incorrect terminal decision; and of correct, but late, terminal decision. These
costs are general enough to apply to realistic clinical trial scenarios, both from
the point of view of public health and of the drug developer. The interim looks
are not assigned direct costs, because data-monitoring committees do in any
case monitor the interim results of clinical trials for treatment-safety issues and
ethically driven early stopping.

The cost functions are assumed to be π-integrable for each (t, z), nonde-
creasing and piecewise smooth in t, and to satisfy for all (t, z, ϑ) :

c1(0, ϑ) = c3(0, ϑ) = 0 , c3(t, z, ϑ) < c2(t, ϑ). (1.3)
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In addition, π is assumed to place positive mass in small neighborhoods of
ϑ = 0 and ϑ = ϑ1 > 0, and c1(·, z, ϑ) is assumed to grow to ∞ for z = 0, 1
and π-almost all ϑ.

In this setting, the decision problem is to choose decision rules

δ = ({τj}K
j=1, ν, χ) (1.4)

to minimize the expected loss or risk function

r(δ) =
∫

Eϑ( L(τν , χ, ϑ) ) dπ(ϑ) (1.5)

subject for fixed α, β > 0 to the type I and II error probability constraints

Eϑ=0(χ) ≤ α , Eϑ=ϑ1(1− χ) ≤ β (1.6)

where ϑ1 > 0 is a fixed alternative deemed to be sufficiently distant from the
null-hypothesis value ϑ = 0 to be a medically significant treatment difference.

This decision theoretic problem is the one defined by Leifer and Slud (2002).
It can be analyzed, standardly, in terms of Lagrange multipliers (Berger 1985)
so that the constraints (1.6) are omitted and the loss-function is replaced (after
a reduction showing there is no loss of generality in assuming π0 ≡ π({0}) > 0
and π1 ≡ π({ϑ1}) > 0) by

Lλ0,λ1(t, z, ϑ) ≡ L(t, z, ϑ) +
λ0

π0
I[ϑ=0] +

λ1

π1
I[ϑ=ϑ1]. (1.7)

Up to this point, ‘adaptivity’ of the clinical trial design is embodied in the
flexibility of actions ({τj}K

j=1, χ) : since data are re-examined at all of the
look-times τ1, . . . , τν , especially good or bad performance of the treatment
group can lead to early decision (rejection or acceptance of H0 with ν <
K), and nuisance parameters such as accrual rates and control group survival
distribution can be re-estimated. Flexibility of clinical trial design has two
aspects: first, that action-space coordinates permit decision at many possible
times, but second, that investigators’ actions defining the times of later interim
looks at the data may depend functionally on aspects of the nuisance parameters
which do not directly appear in the reward or cost functions driving the trial,
but which do affect expected costs.

While the interim look-times {τi, 1 ≤ i ≤ K} that are designed into a
clinical trial add logistical complexity, they can be justified not only because of
the economy in expected sample size and other costs common to all sequential
methods (Siegmund 1985), but also because of the range of surprises — lower
than expected accrual, or higher than expected treatment-group survival, re-
flected in a lower than expected rate of increase of statistical information about
ϑ as a function of calendar time — under which the trial can still achieve
desired experimentwise type I and type II error probabilities.
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This last feature of group-sequential trials is underappreciated. In the stark-
est comparison, that between sequential and fixed-sample trials, the group-
sequential trial is not only more economical on average under expected rates
of accrual, but more robust in maintaining acceptable power under a variety of
erratic accrual rates and other unexpected trial characteristics leading to slow
increase of information with calendar time. We formulate the issue mathemat-
ically in the following brief subsection.

1.2.1 Inference in a Random-Information Environment

As before, let the action-space consist of elements ({τj}K
j=1, χ) — stopping-

times and final binary decision — based upon data available only at times τj

from a Wiener process with drift X(A(t)) = W (A(t)) + ϑA(t), conditionally
given the variance function A(t). However, we now view A(·) itself as a
smoothly increasing random function of time, with A(t) observable at time t,
and with a known or conjectured probability law µA but with trajectory defi-
nitely not known in advance. Note that the conditional statistical information
about ϑ given A(t), based on any subset of the data-history (X(s), s ≤ t)
which includes the observation X(t), coincides with A(t). This is our ideal-
ized model of all of the surprises in a clinical trial which may have an impact
on statistical information about ϑ. The observability of A(t) at look-time t
corresponds to the large-sample estimability of nuisance parameters.

Assume that the loss-function for the inference problem is exactly as given
in (1.2)–(1.3) and either (1.6) or (1.7), but even a very simple cost-structure
such as c1(t, ϑ) = t, c2(ϑ) = 0 = c3(t, ϑ) can be used to convey the main idea.
The prior probability π(·) law for ϑ must now be coupled with a probability
law µA for A(·) regarded as an independent ‘parameter’ of the decision
problem. Then risks (1.5) must be replaced by expectations taken jointly over
(ϑ,A(·)) with respect to the product prior measure π×µA, in order to define
the problem anew as a Bayesian decision problem, and again the constraints
(1.6) are replaced by Lagrange multipliers when L in (1.5) is replaced by
(1.7). A slightly different form of the decision-theoretic problem would average
in Bayesian fashion over dπ(ϑ) but treat unknown A(·) in minimax fashion,
i.e., to replace (1.5) by its maximum or supremum over information functions
A(·) in some class.

The point of this subsection is that an essentially nondeterministic and
unknown A(·) makes even an otherwise ‘fixed-sample’ procedure — one with
K = 1 and τ1 deterministic — depend on an uncertain amount of statistical
information. Evidently a group-sequential procedure which makes use of one
or more looks at the data to estimate features of a very uncertain A(·) can be
found which will outperform such a fixed-sample procedure: the logistical costs
of interim looks should be borne in order that adequate power be available under
an ensemble of possible trajectories for A(·). The desirability of a multi-look
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procedure would derive from the requirement for robustness against alternative
models A(·), even if we would be satisfied, scientifically and ethically, with a
fixed-sample one-look procedure under the assumptions of uniform accrual and
approximately constant withdrawal-rates and control-group failure rate often
used to derive the power of clinical trials.

It seems likely that the observability of A(·) at look-times t will often
force optimal Bayes decision procedures to allow more interim look-times than
they would under the same cost-structures with deterministic A(·). Finding
simple examples in which this can be proved is an attractive current research
problem. In any case, it is intuitively clear that in problems with random
A(·), independent of ϑ and observable at interim look-times, all optimal Bayes
decisions must necessarily, under mild restrictions on µA, have number ν of
interim looks equal to the upper bound K with positive probability. (If not,
we could reason by contradiction and find a procedure which alters an existing
decision rule δ by including an interim look before τ1, thereby narrowing
the class of possible A(·) trajectories, and later employs this information to
improve on δ.)

1.2.2 Extended Actions affecting Information Growth

We can imagine other sorts of violations of standard clinical-trial assumptions
that still other aspects of design flexibility might overcome. For example, there
might be time-trends in patient prognosis, occurring in random fashion but
with overall effect estimable at interim look-times. This kind of violation of
the usual iid assumptions about accrued patients will again have the effect of
randomizing the information process A(t) : if these trends have no effect on
treatment difference, then nothing new is needed beyond the formulation of
the previous subsection. However, we can also imagine that at interim looks,
a pattern of nonconstant treatment-to-control group hazard ratios might be-
gin to emerge, such as an indication of treatment-group differences occurring
only at later times-on-test. In that case, a new degree of design freedom might
be desirable: to prolong followup of already-accrued patients without allowing
any new patients to be accrued. Here again the motivation might be not pri-
marily power under standard conditions but robustness of trial size and power
characteristics under nonstandard ones.

One obstacle to the exercise of this kind of design freedom is to show how a
group-sequential design might allow an option to terminate accrual but extend
followup, while maintaining a fixed experimentwise significance level. This kind
of ‘proof of concept’ was offered by the design of Koutsoukos et al. (1999)
described in Section 1.4 below.
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1.3 2-Look Optimal Decision Rules

Leifer and Slud (2002, revised 2006) show that optimal Bayesian decision rules
for (1.7), in the standard setting of Section 1.2 without randomized information
function or observable data other than X, have the following properties:

1. There is a finite, nonrandom constant t∗ > 0, which may be made
uniform with respect to compact sets of pairs (λ0, λ1) ∈ R2

+, such that
τν ≤ t∗.

2. For each triple (α, β, r) lying on the (closed) lower boundary of the
3-dimensional convex set of triples

(
Eϑ=0(χ), Eϑ=ϑ1(χ),

∫
Eϑ(L(τν , χ, ϑ))π(dϑ)

)
(1.8)

of randomized decision rules, there exists a possibly randomized decision
rule for which (α, β, r) is exactly equal to the triple (1.8).

3. Every minimum-risk, possibly randomized, decision rule for the decision
problem with the loss-function (1.7) has a terminal decision χ which is
a.s. equal to a nonrandom function of the form χ = I[X(τν)≥w(τν)], with
w(·) uniquely defined implicitly through the equation

∫
a1(y, λ0, λ1, θ) eθw(y)−θ2y/2 π(dθ) = 0

where

a1(z, λ0, λ1, θ) = (c2(θ)− c3(z, θ)) · (2I[θ≤0]− 1) +
λ0

π0
I[θ=0] −

λ1

π1
I[θ=θ1]

4. Generically for the loss-function (1.7), that is, after a small random per-
turbation of the cost-function c1 preserving the Assumptions, for almost
every pair (λ0, λ1), the optimal decision rule minimizing the Bayesian
risk for loss function (1.7) is unique and nonrandomized and can be com-
puted by backward induction.

We provide an example of such an optimized nonrandomized Bayes 2-look
decision rule, taken from Leifer and Slud (2002). Consider α = .025, β = .1,
and ϑ1 = log(1.5), with time scaled so that a fixed-sample (K = 1) trial
with this size and type II error probability has duration τ1 = 1. We exhibit
an optimal rule, with K = 2, for the discrete prior and loss-function defined
(after taking c3(t, ϑ) ≡ 0) through the Table
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Figure 1.1: Second look time τ2 in Example of Sec. 1.3, for fixed τ1 = 0.42,
as a function of normalized statistic U1 = X(τ1)/

√
τ1.

Total Trial Time

normalized first-look statistic U 1

0 1 2 3

0.4

0.6

0.8

1

0.56 2.56

eϑ = hazard ratio 0.9 1.0 1.25 1.5 1.75
1.51 · π({ϑ}) 0.2 1.0 0.2 0.1 0.01

c1(t, ϑ) t t t t t

c2(ϑ) 200 100 50 250 500

The optimized (nonrandomized) procedure has three elements: an initial look-
time at τ1 = .42, a second look-time τ2(U1) defined as a function of U1 ≡
X(τ1)/

√
τ1 and displayed in Figure 1.1, and a final rejection-boundary b(U1)

displayed in Figure 1.2 defining the rejection indicator as χ = I[X(τ2)/
√

τ2≥ b(U1)].
These functions do completely describe the group-sequential procedure: the
time-τ1 rejection and acceptance boundaries are determined in Fig. 1.1 through
the observation that termination with ν = 1 occurs whenever τ2 = τ1, i.e.
when U1 < 0.56 or U1 > 2.56, and the time-τ1 decision (rejection-indicator)
χ is 1 on [U1 > 2.56] and 0 on [U1 < 0.56].
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Figure 1.2: Rejection boundary at τ2 as a function of U1 = X(τ1)/
√

τ1 in
optimized 2-look procedure of Sec. 1.3.

Second Look Critical Value

normalized first-look statistic U 1

1.0 1.5 2.0

1.75

1.8

1.85

1.9

1.95

2

0.56 2.56
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1.4 Modified Trial Designs with Accrual-Stopping

We conclude by describing a clinical trial design of Koutsoukos et al. (1999)
extending that of Section 1.2, which allows the flexibility of modifying accrual
without stopping followup, effectively reducing, but not to 0, the rate at which
information about the survival difference parameter ϑ unfolds. (Also, as we
have seen in our motivating discussion in Section 1.2.2, the continuing incre-
ment of information relates to later times on test, which may be particularly
valuable information under some circumstances.) The notation concerning the
repeatedly calculated statistic Sj/

√
n with (estimated) variance Vj is as in

the Introduction. In this design, the look-times τj = j are evenly spaced, since
at most one time-unit of further followup is allowed when accrual is stopped,
and at the end of such a followup period the trial is stopped. Immediate termi-
nation of the trial, respectively with acceptance or rejection, is determined by
extreme boundaries CU,j and CL,j of fixed shape (here, CU,j = c1 is constant
and CL,j of the form CL + c0Vj for suitably chosen constants CL, c0); but
accrual is stopped when Sj/

√
n crosses a less extreme boundary CA,j < CU

(or in any case, when j = K − 1), and rejection or acceptance is determined
at the look-time following accrual-termination by a different boundary CR,j .

The trial is stopped outright at j, with Rejection, if Sj/
√

n ≥ CU ,
and with Acceptance of H0, if Sj/

√
n ≤ CL,j .

The accrual (i.e. entry) of new patients is disallowed at time j if
CA,j ≤ Sj/

√
n < CU , in which case the trial is stopped at time

j + 1, with final Rejection if Sj+1/
√

n ≥ CR,j+1 and Acceptance
otherwise.

Boundaries of this type can be computed to have fixed size and power against
a fixed alternative, and the free parameters in CU , CA,j , CR,j+1 can be op-
timized with respect to a loss function containing costs for wrong decisions
and trial durations under a range of alternatives weighted by a prior π. De-
tails of calculation of such optimized boundaries can be found in Koutsoukos
et al. (1999). An example of the resulting boundaries, in a trial with exper-
imentwise significance level α = .025 and power .8 against a hazard-ratio
alternative of 1.4, are exhibited in Figures 1.3 and 1.4, which are taken from
slides prepared by L. Rubinstein. In these Figures, the boundaries plottedare
those corresponding to the normalized statistics Sj/

√
nVj , and the variances

Vj for logrank statistics Sj/
√

n were calculated under an assumption of con-
stant failure-rates for a two-armed clinical trial with patient arrivals following
a homogeneous Poisson process.
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Figure 1.3: Immediate rejection and acceptance boundaries, respectively
CU/

√
Vj (plotted with filled dots) and CL,j/

√
Vj (filled triangles) for nor-

malized logrank statistics Sj/
√

nVj in a particular case of the Koutsoukos et
al. (1998) boundaries described in Sec. 1.4.
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Figure 1.4: Accrual-stopping and final rejection boundaries, respectively
CA,j/

√
Vj (plotted with filled squares) and CR,j/

√
Vj (filled diamonds) for

normalized logrank statistics Sj/
√

nVj in the same example of the Koutsoukos
et al. (1998) boundaries as in Fig. 1.3.
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2. Bauer, P. and Köhne, K. (1994). Evaluation of experiments with adaptive
interim analyses, Biometrics, 50, 1029-1041.

3. Berger, J. (1985). Statistical Decision Theory and Bayesian Analysis,
Springer-Verlag, New York.

4. Burman, C.-F. and Sonesson, C. (2006). Are flexible desings sound ?,
Biometrics. 62, 664-669, including Discussion.

5. Fleming, T., Harrington, D. and O’Brien, P. (1984). Designs for group
sequential tests, Controlled Clinical Trials, 5, 348-361.

6. Hald, A. (1975). Optimum double sampling tests of given strength I: the
normal distribution, Jour. Amer. Statist. Assoc. 70, 451-456.

7. Jennison, C. (1987). Efficient group sequential tests with unpredictable
group sizes, Biometrika, 77, 577-513.

8. Koutsoukos, A., Rubinstein, L. and Slud, E. (1999). Early accrual-
stopping sequential designs for clinical trials. US National Cancer In-
stitute, preprint.

9. Lan, G. and DeMets, D. (1983). Discrete sequential boundaries for clinical
trials, Biometrika, 70, 659-663.

10. Leifer, E. and Slud, E. (2002, rev. 2006). Optimal time-adaptive repeated
significance tests. Preprint.

11. Liu, Q., Proschan, M. and Pledger, G. (2002). A unified theory of two-
stage adaptive designs, Jour. Amer. Statist. Assoc. 97, 1034-1041.

12. Proschan, M., Follmann, D. and Waclawiw, M. (1992). Effects of as-
sumption violations on Type I error rate in group sequential monitoring,
Biometrics, 51, 1315-1324.

13. Proschan, M. and Hunsberger, S. (1995). Designed extension of studies
based on conditional power, Biometrics 51, 1315-1324.

14. Siegmund, D. (1985). Sequential Analysis: Tests and Confidence Inter-
vals, Springer-Verlag, New York.

15. Slud, E. (1984). Sequential linear rank tests for two-sample censored
survival data, Annals of Statistics, 12, 551-571.



Adaptive Clinical Trials 15

16. Slud, E. and Wei, L. J. (1982). Two-sample repeated significance tests
based on the modified Wilcoxon statistic, Journal of the American Sta-
tistical Association, 77, 862-868.

17. Tsiatis, A. (1982). Repeated significance testing for a general class of
statistics used in censored survival analysis, Journal of the American Sta-
tistical Association, 77, 855-861.


