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This article considers a longitudinal survey like the U.S. Survey of Income and Program
Participation (SIPP), with successive “waves” of data collection from sampled individuals, in
which nonresponse attrition occurs and is treated by weighting adjustment, either through
adjustment cells or a model like logistic regression in terms of auxiliary covariates.
We measure the biases in estimated initial-wave (Wave 1) attribute totals between the
survey-weighted estimator in the first wave and the weight-adjusted estimator for the same
Wave 1 item total based on later-wave respondents. Three new metrics of quality are defined
for models used to adjust a longitudinal survey for attrition. The metrics combine estimated
between-wave adjustment biases based on subsets of the sample, relative to the estimated
total, for various survey items. The maximum of the biases for estimated totals of a survey
item is calculated from the weight-adjusted subtotal of the first j sample units, as j ranges from
1 to the size of the entire (Wave 1) sample, after a random re-ordering either of the whole
sample or of the units within distinguished cells (which are then also randomly re-ordered);
and the average over re-orderings of the maximal adjustment bias is divided by the estimated
wave 1 attribute total to give the metric value. Confidence bands for the metrics are estimated,
and the metrics are applied to judge the quality of and to select among a collection of logistic-
regression models for attrition nonresponse adjustment in SIPP 96.

Key words: adjustment cell; logistic regression; weighting; random re-ordering; raking;
subdomain.

1. Introduction

To measure the quality of adjustment for attrition in a longitudinal survey, one would

certainly try to evaluate the biases of adjustments using external data on the sample frame

and the survey variables whenever such external data are available. But external data

for evaluation seldom are available, so survey investigators must usually evaluate and

choose among competing adjustment methods based on comparisons internal to the

survey. Yet there is little published methodological work on how to measure the biases of

Q4

adjustment from the internal evidence of a longitudinal survey.
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There has been a great deal of work on calibrating, reconciling, and benchmarking time

series of differing reporting periods and accuracies (Dagum and Cholette 2006). There has

also been previous theoretical work on the large-sample behavior of model-based

nonresponse weight adjustment methods. One recent example is Kim and Kim (2007); and

these same authors, in an unpublished 2007 preprint, studied the problem of choosing

between alternative parametric models for survey nonresponse using the same data on

which the estimated parameters are applied to adjust the weights. But our literature search

has yielded few papers explicitly assessing adjustment effectiveness using evidence only

within the adjusted survey. A notable example is Eltinge and Yansaneh (1997), which

discusses several diagnostics and sensitivity checks for the definition of weighting

adjustment cells in a survey.

An important paper on internal longitudinal evaluation of nonresponse adjustment

methods from a calibration perspective is Dufour et al. (2001). That paper specifically

considers calibration adjustments, and assesses magnitudes of adjustment by a metric

the authors define for tracking weight changes through several stages of a weight-

adjusted longitudinal survey. By conducting a large simulation study within which they

randomly subsample from a large longitudinal survey dataset (SLID, the Canadian

Survey of Labor and Income Dynamics), Dufour et al. compare the weight-changes due

to nonresponse weighting adjustments calculated by two model-based adjustment

approaches (Logistic regression with stepwise variable selection and Response

Homogeneity Groups – what we call below the adjustment-cell method – with cells

defined using a CHAID-based Segmentation Model). Calibration (Särndal and Deville

1992) adjusts weights according to a model (of adjustment-cell or logistic-regression

type) minimally subject to matching the estimated population totals in designated

subsets exactly with the totals from an external study. Then the estimated adjustment

biases (as in Bailey 2004 and as described below in connection with Slud and Bailey

2006) for population totals of other early-stage variables could be used to judge the

overall success of the modelling approach used in adjustment. This could have been,

but was not, done in Dufour et al. (2001), nor were effects of weighting adjustment on

population subdomains examined.

Slud and Bailey (2006) studied the estimates and standard errors of differences, in the

U.S. Survey of Income and Program Participation (SIPP), between Wave 1 totals of

various 1996 cross-sectional survey items and the nonresponse-adjusted totals of the same

Wave 1 items using response data from a later Wave (4 or 12) of the same survey. The

nonresponse adjustments studied were either derived by an adjustment cell method or by

parsimonious logistic regression models for the later-wave response indicators. Relative

and standardized estimated biases were seen to vary considerably and somewhat

erratically from one adjustment model to another. As in Dufour et al. (2001), many com-

peting adjustment models could be defined, depending on which attribute variables would

be used in constructing adjustment cells or as logistic regression predictors. Slud and

Bailey (2006) noted that including Poverty as a predictor did have the effect, akin to

raking, of making the sample-wide estimated Wave 1 total of Poverty particularly small.

However, since that effect directly stems from the estimating sample-wide equation

defining the logistic regression coefficients, they conjectured that this artificial effect

would be removed by considering estimated Wave 1 bias within a number of different
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subdomains. They also raised the possibility of customizing the attrition adjustment

model to remove between-wave adjustment biases as far as possible. This

suggests creating a composite metric by com-bining the estimated between-wave

adjustment biases for various survey items. However, to avoid the artificial effect

described above of adjustments which may only be effective on the whole population,

Q1

such a metric ought to incorporate the estimated biases on multiple subdomains of

the population.

The primary goal of this research has been to devise metrics to aid in the comparison of

different model-based methods of adjustment for nonresponse due to attrition, and thus to

provide a basis for choosing among adjustment methods. Several earlier comparative

investigations related to adjustment methods have been conducted, even within the SIPP

survey structure, but they seem not to have resulted in clear advantage for any adjustment

method over others. (See Rizzo et al. 1994 for example).

Our approach is to adjust weights using models for later-stage response, of adjustment-

cell or logistic regression type, to calculate the later-stage survey estimates of first-stage

totals of population and other survey variables. We then measure the biases of estimated

late- versus early-stage weighted subtotals, for many different population subdomains.

We define and study three related metrics for adjustment effectiveness, which combine

the relative biases of specific survey variables over specified population subdomains.

The ultimate objective is then to use the metrics to choose among adjustment models

within SIPP 1996. In this research, as in Slud and Bailey (1996), adjustments are evaluatedQ2

only for attrition, i.e., for between-wave losses of responders, but in practice Wave 1

adjusted for nonresponse is still only a surrogate for the full population. Our approach

might also have been used to track correctness of attrition nonresponse between many

pairs of waves. We have not done this, although a referee correctly points out the

complication that in practice, the models which yield the best metric values between one

pair of waves might be different from those which optimize metrics between a later pair

of waves. We have also not attempted to track the magnitudes of weight adjustment

changes across waves as Dufour et al. (2001) did, because our aim was to assess the

effectiveness of adjustment models with respect to the best metrics of adjustment

correctness available to us.

The article is organized as follows. Section 2 defines the metrics and presents bounds,

theoretically valid as prediction bounds when the adjustment model is correct – which can

be used in practice to flag inadequate weight adjustments. Section 3 applies the metrics to

the comparison of a series of adjustment-cell or logistic-regression models which might

have been used in attrition adjustment of the SIPP 1996 data, expanding on those studied

in Slud and Bailey (2006). The adjusted SIPP 96 totals and metrics in Section 3 are based

upon first-stage weights (incorporating nonresponse adjustments up to Wave 1) and

model-based later-wave adjustments, but no population controls. However, raking or

calibration to updated-census population totals in defined cells is done in practice

whenever a weighting adjustment is applied to a large national longitudinal study

like SIPP. So we present in Section 4 also the comparison among Wave 1 totals based

on Wave 1 and later-wave adjusted weights which are then raked as was actually done

in SIPP. Section 5 draws overall conclusions, both about the metrics studied and the

consequences for model-based adjustment in SIPP.
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2. Formal Development: Metrics and Bounds

We begin by formulating the survey design and nonresponse as a so-called quasi-

randomization model (Oh and Scheuren 1983). Let S denote the sample of n ¼ jSj

persons drawn from sampling frame U, with known (or effectively adjusted) single

inclusion probabilities {pi}i[U, and responding in Wave 1. For a series of cross-

sectional survey measurements indexed by k ¼ 1; : : : ;K, such as the K ¼ 11 items

studied by Bailey (2004) and Slud and Bailey (2006), denote by yðkÞi the Wave 1 item

values and Xi a vector of auxiliary variable values for all i [ U. Let ri denote

individual response indicators (observed for all i [ S) in a specified later wave of the

same survey, and let pi ¼ Pðri ¼ 1jSÞ denote the (unknown) conditional probabilities

of individual response in that later wave. Let p̂i ¼ gðxi; n̂Þ denote estimators of these

unknown probabilities derived (using a known function g) from a parametric model

using auxiliary data xi, within which parameter-estimators n̂ are obtained via estimating

Equations (Kim and Kim 2007). For any population attribute zi, i [ U, the frame-

population total is denoted tz ¼
P

i[U zi, and the corresponding Horvitz-Thompson

estimator is t̂z ¼
P

i[S zi=pi.

For each survey item yðkÞi ; i [ U, and the adjustment strategy embodied in the estimated

response probabilities p̂i define the estimated nonresponse bias for each population

subdomain D , U as

B̂kðDÞ ¼
i[D>S

X ri

r̂i
2 1

� �
yðkÞi =pi ð1Þ

In Slud and Bailey (2006) and earlier research of Bailey, the domain D was all of U, and

the quantity B̂kðUÞ was interpreted as the difference between an adjusted estimator of ty ðkÞ

using the data ðri; riy
ðkÞ
i ; xi : i [ SÞ and the ordinary Horvitz-Thompson estimator t̂y ðkÞ ; and

was regarded as an estimator of attrition nonresponse bias due to the method of

adjustment.

When new model-based adjustments are incorporated into the survey weighting for

later waves, especially when model-terms related to specific survey items are introduced,

our experience (Slud and Bailey 2006) suggests that the whole-population bias terms

B̂kðUÞ may be reduced much more than biases on smaller domains D. Our aim is to

devise useful measures of maximum bias over many subdomains: good model-based

adjustments ought to reduce biases over the interesting domains and likely cannot hope to

reduce biases over all subdomains. To discourage models which correct simply for the

biases of individual survey-item totals over the whole population, we compute the

maximum of biases for the subdomains defined from consecutively indexed subsets either

of the whole population, as in definition (2) below, or of each of a set of distinguished

cells, as in (8). Since the sequential indexing of the sampled population is largely

arbitrary, and is likely not related to any mechanism of selective nonresponse, we remove

the effect of any particular indexing of sample (or of sample within the distinguished

cells) by defining our metrics through averaging the maximum subsequence biases over

all random reorderings of the sample.
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2.1. Relative Subdomain Bias

We now propose a measure of the typical relative bias in estimating item totals over

subdomains. The idea is to consider the largest value of absolute relative bias B̂kðDÞ=t̂y ðkÞ

over a collection of different subsets D , U. We first randomly reorder the elements of

the n elements of S, giving the new sequencing t ¼ ðt ð1Þ; t ð2Þ; : : : ; t ðnÞÞ: The largest

absolute bias in survey variable k over consecutively t-indexed subdomains of S is

1#a#b#n
max jB̂kð{tði Þ : a # i # b}Þj # 2�

1#a#n
max jB̂kð{t ð1Þ; : : : ; t ðaÞ}Þj

which follows immediately from the triangle inequality

jB̂kðD1Þj # jB̂kðD1 <D2Þj þ jB̂kðD2Þj; D1 ¼ {tði Þ : a # i # b};

D2 ¼ {tði Þ : 1 # i # a}

To measure the overall relative bias in estimating item k totals over subdomains, we define

mk ¼ Er
1#a#n
max jB̂kð{t ð1Þ; : : : ; t ðaÞ}Þj

� �
=t̂y ðkÞ ð2Þ

where the expectation is taken, for a fixed sample, over random permutations t chosen

equiprobably from the n! permutations of the elements of S. The quantity mk is smaller

than the largest relative bias jB̂kðDÞj=t̂y ðkÞ over all subsets C , U – which is too large an

estimate of error, and also too expensive to calculate – but does measure the expected

magnitude of the worst relative bias from a subsequence in a typical (random) scanning

order of the sampled population.

In settings where the relative estimated bias

d ðkÞ ; B̂kðUÞ=t̂y ðkÞ ¼
i[S

X ri

p̂i
2 1

� �
ðyðkÞi =piÞ=t̂y ðkÞ ð3Þ

is large, we will see below that mk and its estimator m̂k are not much different from jd ðkÞj.

However, if d ðkÞ is small – which may be true for artificial reasons if the model used to

define p̂i prominently features the attributes {yðkÞj ; j [ S} – then m̂k may be much larger,

since the model-fitting may not simultaneously adjust for weighted yðkÞi totals over

arbitrary subsets of the sample. Definition (2) attempts to penalize models which directly

adjust the population-wide total of an attribute.

The metric mk depends only on the sample data. Although it is too complicated to

evaluate exactly, it can be estimated well by evaluating its defining expectation over

random permutations t using a Monte Carlo simulation strategy. For each of a set 1, : : : ,R

of indices r denoting Monte Carlo replicates, we define independent random permutations

tr of the indices i [ S. For each r; ðtrð jÞ; 1 # j # nÞ is equiprobably chosen from the n!

possible reorderings of S , a choice which is easily implemented in a Monte Carlo

simulation by defining a sample of independent Uniform(0,1) variates Vr ¼ ðVri; i [ SÞ

and letting trð jÞ be the antiranks, i.e., the sequence of indices i of the Vri observations
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written in increasing order. Then the estimator m̂k defined in (2) is

m̂k ¼
1

R

XR
r¼1

1#j#n
max jB̂kð{trð1Þ; : : : ; trð jÞ}Þj=t̂y ðkÞ

¼
1

Rt̂y ðkÞ

XR
r¼1

0#x#1
max

i[S

X
I½Vri#x�

ri

p̂i
2 1

� �
yðkÞi

pi

������
������ ð4Þ

A metric for nonresponse bias combining all survey variables indexed by k ¼ 1; : : : ;K,

could be

M ; K21
XK
k¼1

mk ¼ K21
XK
k¼1 D,S

sup jB̂kðDÞj=t̂y ðkÞ ; M̂ ¼ K21
XK
k¼1

m̂k ð5Þ

and a weighted-average definition would also make sense.

The quality of estimation of mk in terms of m̂k, and relationships between these and

jd(k)j, are addressed in Section 2.3 below. We turn first to the modification of (2) and (4) to

allow expected and estimated maximum absolute relative discrepancies with respect only

to those random re-orderings which preserve distinguished cells of the population, such as

the cells to which population totals would be raked or calibrated, or the population

subdomains of particular interest to data users.

2.2. Metrics for Subdomain Bias Over Distinguished Cells

Most random permutations of the sample completely shatter any meaningful sample

subdomains. Yet the idea behind raking or calibration is precisely that certain estimated

subdomain totals – usually, the estimated population totals over the cells Ac of a specified

geographic-demographic partition U ¼ <C
c¼1Ac of the frame population – must be

constrained equal to the benchmark subdomain totals (the controls) of a current (updated)

census. For that reason, it makes sense to measure bias estimates B̂kðAcÞ over these cells,

and to assume from now on that a partition A of U into cells Ac, c ¼ 1; : : : ;C, has been

fixed. The idea is to modify (2) so that the allowed permutations must maintain the

membership of elements in each cell Ac.

One approach would be to aggregate cellwise biases into a relative accumulated

absolute bias

mCum
k ¼

XC
c¼1

vðkÞ
c jB̂kðAcÞj=t̂y ðkÞ ð6Þ

where vðkÞ
c ðSÞ are a set of cell- and item-specific weights. This bias metric is very

conservative, much larger than the relative bias numbers mk, because it aggregates across

cells the absolute biases over all cells, as though all domain totals in all cells could

be simultaneously biased in the same direction. However, we will look at this metric

in Table 6 below to see what it tells about choosing between adjustment models in

SIPP 1996.
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A less extreme modification of (2) is to restrict the permutations t in the

expectation – now denoting them by s to reflect the new constraint – so that

{sði Þ : i [ Ac > S} ¼ Ac > S, i.e., the units are reordered within each sample block

Ac > S but not mingled across blocks. To explain this invariance, assume that the sample

S is indexed in such a way that the nc ; jAc > Sj sampled elements in the C’th cell Ac

appear as elements consecutively numbered from
Pc21

j¼1 nj þ 1 to
Pc

j¼1nj in the

enumerated sample S . The invariance of the cells under s means that

for all 1 # c # C and i [ Ac > S;

n1 þ n2 þ : : :þ nc21 , sði Þ # n1 þ n2 þ : : :þ nc

ð7Þ

Now the allowed random permutations s of the sample elements are chosen equiprobably

from the
QC

c¼1nc! permutations s of {1, 2, : : : , n} which satisfy (7). Finally, our modfied

metric is defined as the expectation over s of the maximum absolute cumulative weighted

sum of cellwise biases relative to t̂y ðkÞ as follows:

m*
k ; Es

1#q#n
max jB̂kð{s ð1Þ; : : :;s ðqÞ}Þj

� �
=t̂y ðkÞ

¼ Es
1#c#C ;q[Ac

max
Xc21

l¼1

B̂kðAlÞ þ B̂kð{tðaÞ : a [ Ac; a # q}Þ

�����
�����

 !
ð8Þ

An estimator for the modified quantity (8) can be implemented in terms of a collection of

random batches Vr of n independent Uniform(0,1) random variates. The r’th reordering of

the elements i within the reordered block Ac > S, is given by the indices in the range given

by (7) of the variates ðVir; i [ Ac > SÞ ordered from smallest to largest. Then the estimator

for (8) becomes

m̂*
k ; ðRt̂y ðkÞ Þ21

XR
r¼1

1#c#C
max

q[Ac

max
Xq21

l21

B̂kðAlÞ þ B̂kð{i [ Ac > S;Vri # Vrq}Þ

�����
����� ð9Þ

or equivalently,

m̂*
k ; ðRt̂y ðkÞ Þ21

XR
r¼1

1#c#C
max

q[Ac

max
{i#n1þ: : :þnc21}<{i[Ac>S:Vri#Vrq}

X ri

p̂i
2 1

� �
yðkÞi

pi

������
������ ð10Þ

We next place confidence bounds on the differences between the quantities mk, m
*
k and

their estimates m̂k; m̂
*
k and on the differences between these quantities and jd(k)j.

2.3. Confidence Intervals and Bounds For mk And m*
k

All of the quantities mk, m
*
k are functions of the sampled survey data, and the probability

statements made at this stage concern only the chance element introduced by the random

variates Vr used in defining (4) and (9), conditionally given the sample. At the end of the

Section, we interpret the meaning of sample-based metric-estimators m̂k for the survey

population and adjustment model.
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We begin with the simplest and clearest confidence statement. Since m̂k is calculated as

the empirical average over quantities calculated from a series of R random permutations of

the sample, its sampling variability due to those permutations can be assessed by empirical

standard errors

seðm̂kÞ ¼
1

jt̂y ðkÞ j

1

RðR2 1Þ

XR
c¼1

0,x#1
max

i[S

X
I½Vci#x�

ri

p̂i
2 1

� �
yðkÞi

pi

������
������2 t̂y ðkÞm̂k

0
@

1
A

22
4

3
5

1=2

Thus, with approximate 99% confidence when R is large,

jmk 2 m̂kj # 2:576·seðm̂kÞ ð11Þ

the right-hand side being asymptotically, for large R, proportional to 1=
ffiffiffi
R

p
. Similar

confidence statements with respect to the randomness of the permutations sr can be given

bounding m*
k 2 m̂*

k .

The difference between the metric value mk and the overall relative bias jd(k)j is due to

the fluctuations with varying x [ ½0; 1� of the quantities

ZkðxÞ ; ZkrðxÞ ¼
i[S

X
I½Vri#x�

ri

p̂i
2 1

� �
ðyðkÞi =piÞ ð12Þ

being maximized in (4), for fixed r, where Vri are independent identically distributed

Uniform(0,1) variates, and where Zkð1Þ=t̂y ðkÞ is by definition equal to d (k) given in (3). If

the quantities Zk(x) were replaced by their expectations (i.e., if I½Vri#x� were replaced by x),

then expression (4) would become jd(k)j. Thus, the discrepancy m̂k 2 jd ðkÞj can be bounded

by the maximum absolute value of the random weighted empirical process indexed by a

continuous argument x [ ½0; 1�,

bðkÞ
n ðxÞ ¼

1ffiffiffi
n

p
i[S

X
ðI½Vri#x� 2 xÞ

ri

p̂i
2 1

� �
yðkÞi

pi

¼
1ffiffiffi
n

p ðZkðxÞ2 xd ðkÞ t̂y ðkÞ Þ ð13Þ

conditionally given all sample data {i; ri; xi; ðriy
ðkÞ
i ; 1 # k # KÞ : i [ S}, with only the

variates Vri; i [ S , regarded as random. The process bðkÞ
n ð·Þ has mean 0, and according to a

slight extension of the Donsker Theorem (Pollard 1980), has approximate distribution for

large n the same as

ffiffiffiffiffiffiffiffi
g ðkÞ

p
W8ðxÞ ; n21

i[S

X ri

p̂i
2 1

� �2

ðyðkÞi =piÞ
2

2
4

3
5

1=2

W8ðxÞ ð14Þ

as a random continuous function of x [ ½0; 1�, where W 8(x) denotes a tied-down Wiener

process or Gaussian process with mean 0 and

CovðW8ðvÞ;W8ðuÞÞ ¼ min ðv; uÞ2 v·u
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The scaling constants in (14) governing the amplitude of fluctuations of bkð·Þ,

g ðkÞ ¼ n21

i[S

X ri

p̂i
2 1

� �2

ðyðkÞi =piÞ
2 ð15Þ

are readily computed from the sample data, and under general assumptions are bounded

for large n. By definition of mk and the remark that Zkð1Þ ¼ d ðkÞ=t̂y ðkÞ in (12) and (3),

jmk 2 jd ðkÞk ¼ mk 2 jd ðkÞj

#
1

t̂y ðkÞ

EV
0,x#1
max

i[S

X
ðI½Vi#x� 2 xÞ

ri

p̂i
2 1

� �
ðyðkÞi =piÞ

������
������

0
@

1
A

¼ ð
ffiffiffi
n

p
=t̂y ðkÞ ÞEV

0,x#1
max jbkðxÞj

� �
< 1:2286

ffiffiffi
n

p ffiffiffiffiffiffiffiffi
g ðkÞ

p
=t̂y ðkÞ

� �
ð16Þ

since 1.2286 is the expectation of sup x[½0;1� jW8ðxÞj which arises in calculating

percentage points of the one-sample Kolmogorov-Smirnoff statistic, and is readily

calculated using the density of this random variable given by Kolmogorov and reproduced

by Feller (1948).

A similar argument, using the representation (10), proves that m*
k 2 jd ðkÞj is positive and

bounded above by the same quantity on the right-hand side of (16).

For specific items k, we find when n is large that for moderate numbers R of random

permutations, the difference m̂k 2 mk (or m̂*
k 2 m*

k) is generally very small compared to mk

(respectively m*
k). Then, by calculating the right-hand side of (16), we find roughly how

small the value m̂k must be in order that the sample data be compatible with a zero relative

bias d (k). The objective of this kind of analysis is first of all to flag as “inadequately

adjusted” those items for which model-based attrition nonresponse adjustment has resulted

in estimated metric values m̂k greater than the sum of the right-hand sides of (11) and of

(16). Since we will find generally that the values of m̂*
k and m̂k are roughly the same, we

will use the same threshold for metric values m̂*
k .

We can now interpret the bounds (16) and (11). First, we have seen that it is easy to

choose R large enough so that the right-hand side of (11) is much smaller than that of (16),

which implies that we can essentially disregard the difference between mk and m̂k

(or between m*
k and m̂*

k). Second, (16) tells us that when one of three quantities mk or m*
k

or jd (k)j is much larger than the bound in (16), then all three will be, indicating that this

item k has been badly adjusted (for the Wave and model under consideration). Third, when

the quantities mk, m
*
k , jd

(k)j are of the same or smaller size compared with the bound in

(16), the quantity m*
k gives the quality of adjustment under a meaningful metric which

takes account of various population subdomains including all of the distinguished cells Ac.

Next, we compare the estimated metric values m̂k and m̂*
k , individually or aggregated as

in (5), across different adjustment models in order to choose a “best” model in a specific

survey application.
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3. Adjustment Metric Values in SIPP 96

For the case of the U.S. SIPP 1996 survey, with K ¼ 11 cross-sectional items, response

probabilities p̂i were estimated by the specific adjustment-cell and logistic-regression

models mentioned above, all as described in detail by Slud and Bailey (2006). Briefly,

the cross-sectional survey items yðkÞi studied are: indicators that the individual lives

in a Household which receives (i) Food Stamps (Foodst), or (ii) Aid to Families with

Dependent Children (AFDC); or indicators that the individual receives (iii) Medicaid

(Mdcd), or (iv) Social Security (SocSec); and indicators that the individual (v) has

health insurance (Heins), (vi) is in poverty (Pov), (vii) is employed (Emp), (viii) is

unemployed (UnEmp), (ix) is not in the labor force (NILF), (x) is married (MAR),

or (xi) is divorced (DIV).

In this data example, nonresponse is adjusted in one of two ways: either using a SIPP

adjustment-cell model based on 149 standard cells (Tupek 2002) defined in terms of

variables including age, sex, race, Hispanic origin, educational level, and labor force

status; or using one of a series of logistic regression models A–III summarized in Table 1.

(Of these models Model A and B were the ones used in Slud and Bailey 2006). The models

C–E were selected to have progressively better fit, using an indicator of Wave 4 response

as response-variable within the 94,444 SIPP Wave-1 sample records with positive base-

weights. The variables used in these regression models include race, Hispanic origin,

Renter versus Owner of housing unit, indicator that individual is the Household Reference

Person, indicator of College education, a 4-category variable of Family type used in other

raking-adjustment cells defined for use in SIPP by Tupek (2002), U.S. Census region, an

indicator of ownership of Assets, plus some or all of the 11 SIPP survey items listed above.

Table 1. Logistic regression models used to adjust Wave 4 or Wave 12 nonresponse in SIPP 96. Df is the number

of independent coefficients in each model, including Intercept, and Dev the deviance for the 94,444-record SIPP

96 sample data in Wave 4. AIC is equal to Dev þ2*Df

Model Df Variables Dev AIC

A 8 Wnotsp Renter College RefPer Black
Renter*College Black*College

76,558 76,574

B 9 same as A, plus Pov 76,545 76,563
C 14 same as B, plus Foodst Mdcd

Heins UnEmp Div
76,299 76,327

D 14 same as B, minus Black*College plus
Mdcd Heins UnEmp Pov*Heins
Mdcd*Heins Heins*College

76,242 76,270

E 18 same as D, plus hisp þ Famtyp 76,017 76,053
F 18 same as C, plus Afdc SocSec Emp Mar 76,280 76,316
O 10 College Assets hisp Region Famtyp 66,285 66,305
I 20 same as O, plus Renter Refper Pov

Mdcd Heins UnEmp Foodst SocSec
Mar Renter*College

65,678 65,718

II 22 same as I, plus Pov*Reg3 Pov*SocSec 65,652 65,696
III 31 same as II, plus AFDC NILF Div Wnotsp

Black Black*College Pov*Heins
UnEmp*Assets Heins*College

65,638 65,700
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As can be seen by the dramatic decrease in deviance in the models O-III by comparison

with the previous models, the binary variable Assets turns out to be by far the single

strongest variable: 97% of individuals [in Wave 1 responding households] with

Assets ¼ 1 responded in Wave 4, while only 76% of individual with Assets ¼ 2 did so.

Forward and backward selection among models involving Assets resulted in the

progressively better models I, II, and III. (In these models as defined in the Table, Reg3

denotes the indicator of the third of four U.S. Census regions). For purposes of

comparison, the “model” which treats nonresponse probabilities as constant but otherwise

unconstrained within each of the 149 SIPP adjustment cells is calculated to have deviance

76,117 based on 149 degrees of freedom.

The method of model selection followed in the remaining data analysis of this section,

as described and justified in the previous section, is to search for models and items with

few metric values m̂k; m̂
*
k , which are large compared to the bounds obtained by adding the

right-hand sides of (11) and (16). This contrasts with the approach of Slud and Bailey

(2006) who studied models A and B and, in the present notation, compared estimated

population-wide adjustment biases d (k) with their design-based standard errors as found by

a Balanced Repeated Replication method.

Calculations of m̂k have been made with R ¼ 100 random-permutation Monte Carlo

replications, with the results for Model B presented in Table 2. (Because n ¼ 94; 444 is so

large, the between-replication differences are small and this choice of R is ample). The

final columns of Table 2 respectively display the bounds b4,k, b12,k on the right-hand sides

of (16) (which turn out to be virtually identical for the adjustment-cell and logistic-

regression adjustment methods) for adjustments of Waves 4 and 12 nonresponse. It also

turns out that for all items and combinations 4C, 4L, 12C, and 12L, the bounds on the

right-hand side of (11) range from 1-5% of the corresponding bounds (16). The analogous

Table with logistic models A and D and F, also calculated with R ¼ 100 iterations, is

displayed as Table 3. However, the columns of bounds b4,k, b12,k are included in the latter

Table only for model D, because the bounds for the other models are virtually identical

Table 2. Quantities m̂k in (4) estimated from SIPP96 data, for later-wave

nonresponse adjustment either to Wave 4 or 12, and by either the Adjustment-

Cell (C) or Logistic-Regression (L) method (Model B) and based on R ¼ 100

replications. The last two columns are the bounds in (16), with a ¼ :01

Item m̂4C m̂4L m̂12C m̂12L b4,k B12,k

Foodst .0052 .0186 .0442 .0130 .0056 .0123
AFDC .0067 .0248 .1040 .0350 .0078 .0173
Mdcd .0066 .0279 .0163 .0426 .0053 .0119
SocSec .0191 .0116 .1118 .1038 .0041 .0086
Heins .0085 .0065 .0197 .0133 .0019 .0040
Pov .0187 .0033 .0372 .0091 .0047 .0097
Emp .0016 .0017 .0082 .0122 .0020 .0041
UnEmp .0534 .0594 .1176 .1280 .0131 .0250
NILF .0032 .0034 .0333 .0462 .0033 .0069
MAR .0111 .0018 .0508 .0226 .0025 .0051
DIV .0124 .0201 .0235 .0390 .0067 .0133
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with these, and again the bounds from (11) are only a few percent of the bounds (16)

(Table 4).Q3

Inspection of Tables 2 and 3 reveals that the metric m̂k with very few exceptions in

Wave 12 clearly exceeds the corresponding bounds bk for the adjustment-cell model and

for all of the logistic regression models. One notable exception is Pov, where as seen by

Slud and Bailey (2006), Model B includes Pov as a predictor and does adjust effectively

both in Waves 4 and 12. Similarly, we see that Model D, which includes variables Pov,

Mdcd, Heins, and UnEmp as predictors, does a particularly good job of adjusting the totals

of these same variables as measured by the metric m̂k. Indeed, the most striking

preliminary conclusion from examining the tables of metric values under these various

logistic regression models is that including a variable as a predictor generally results in

Table 3. Quantities m̂k estimated from SIPP96 data based on R ¼ 100 random permutations, for wave 4 or 12

nonresponse adjustment by logistic regression model A (first two columns) or model D (next two columns).

The last two columns are the bounds b4,k, b12,k from (16) using Model D

Item m̂4;A m̂12;A m̂4;D m̂12;D m̂4;F m̂12;F bD4;k bD12;k

Foodst .0120 .0086 .0076 .0110 .0039 .0093 .0056 .0123
AFDC .0175 .0446 .0067 .0624 .0053 .0134 .0077 .0170
Mdcd .0219 .0346 .0035 .0078 .0037 .0084 .0052 .0114
SocSec .0117 .1040 .0125 .1066 .0027 .0073 .0041 .0086
Heins .0076 .0148 .0013 .0027 .0012 .0028 .0019 .0039
Pov .0123 .0127 .0032 .0074 .0032 .0085 .0047 .0098
Emp .0021 .0116 .0015 .0161 .0014 .0034 .0020 .0041
UnEmp .0626 .1322 .0095 .0207 .0098 .0184 .0139 .0288
NILF .0026 .0447 .0029 .0456 .0023 .0063 .0033 .0069
MAR .0023 .0236 .0018 .0213 .0017 .0037 .0025 .0051
DIV .0201 .0390 .0168 .0334 .0048 .0098 .0068 .0139

Table 4. Estimated metric values m̂
*

k defined in (9) for Wave 4 adjustment (except for Wave 12 in last row) with

R ¼ 100, based on the Adjustment cell and logistic regression models, using SIPP 96 data with demographic

(raking) cells as partition elements Ac. Final two rows of the Table give metric m̂
*

k values averaged over Items k

Item ModA ModC ModD ModF ModI ModIII Adj.Cell

Fdst .0126 .0057 .0084 .0057 .0050 .0051 .0060
AFDC .0179 .0065 .0075 .0064 .0063 .0059 .0072
Mdcd .0220 .0044 .0042 .0043 .0046 .0043 .0069
SocS .0118 .0115 .0127 .0038 .0048 .0045 .0192
Hins .0078 .0021 .0022 .0020 .0027 .0026 .0086
Pov .0132 .0050 .0052 .0051 .0049 .0049 .0191
Emp .0030 .0026 .0028 .0026 .0024 .0022 .0023
UnEmp .0627 .0097 .0092 .0098 .0103 .0102 .0535
NILF .0032 .0032 .0035 .0030 .0033 .0031 .0039
MAR .0028 .0025 .0025 .0025 .0038 .0035 .0112
DIV .0205 .0057 .0170 .0056 .0055 .0054 .0129
POP .0023 .0022 .0023 .0022 .0020 .0019 .0020
Wav4.Avg .0150 .0051 .0065 .0044 .0046 .0045 .0127
Wav12.Av .0411 .0273 .0304 .0110 .0163 .0113 .0492
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very good adjustment as measured either by metric m̂k or m̂*
k . This is true even under

Model F, where we can see from Table 1 that the last batch of variables entered between

Models D and F did not seem very important as measured by an increase in maximized

loglikelihood, or equivalently a decrease in Deviance.

Recall that we devised the metrics m̂k; m̂
*
k , in part to penalize model-based adjustment

which, like raking, removes bias directly in terms of population totals. Recall also that m̂*
k

differed only by finding maximum absolute discrepancies over consecutive sequences of

reordered indices which keep distinguished cells consecutively indexed. (In our

computations, the distinguished cells used in the metrics were not the 149 nonresponse

adjustment cells, but rather a system of 101 cells defined by Sex, Age-intervals, and Race,

which are used by SIPP in raking to demographic population totals). In fact, the metric

values m̂*
k turn out to be only slightly larger than m̂k, and they follow a very similar pattern

across the different models. Consider Table 5 charting the progression of averaged m̂k

metrics (over k ¼ 1; : : : ; 11 and Population Count) as the adjustment model varies over

the Adjustment Cell model and the ten Logistic models in Table 1, computed as in (5),

with equal weights wk ¼ 1=12. The logistic regression models are all, except for Model O,

clearly better than the cell-based model in adjusting at Wave 12, but at Wave 4, Models A

and B actually seem a little worse and O seems much worse than the cell-based adjustment

method. Since Models A–E are listed in order of decreasing Deviance or AIC, and Models

O-III are much better than the first six logistic models from this viewpoint, there is no strict

relationship between decreasing AIC and decreasing M̂. Model F looks to be the clearly

best adjustment model at both waves in Table 5, although Models I–III are strong

competitors and would be preferred from examination of deviances. The metric M̂ seems

to reward Model F for including many of the SIPP items as predictors, and the much

lower-deviance models I–III which incorporate some of the same predictor variables used

to form the raking cells used as distinguished evaluation cells Ac are not rewarded for their

predictive accuracy by the metrics mk and m*
k .

Table 5. Metric values m̂k calculated on SIPP 96

data for Adjustment-cell model and for logistic

regression models A-F and averaged over

k ¼ 1; : : : ; 12, where item 12 is Population

Count ðyð12Þi ; 1Þ

Model Wave 4 Wave 12

Adj.Cell 0.01228 0.04741
LReg, A 0.01451 0.03942
LReg, B 0.01504 0.03893
LReg, C 0.00426 0.02475
LReg, D 0.00571 0.02812
LReg, E 0.00481 0.02654
LReg, F 0.00342 0.00782
LReg, O 0.03078 0.05269
LReg, I 0.00393 0.01371
LReg, II 0.00393 0.01363
LReg, III 0.00392 0.00880
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Although we would not have chosen Model F from likelihood considerations, this

model may be an excellent choice from the vantage point of nonresponse adjustment. The

SIPP dataset is large enough ðn ¼ 94; 444Þ that all of the SIPP survey items except AFDC

and Emp have highly significant coefficients. Moreover, the parametric adjustment models

F, II, and III are accomplishing something that the adjustment cell model cannot: they are

generating response probabilities with good behavior over raking cells considered as

subdomains. To see this more clearly, consider the less forgiving metric m*
k defined in (8):

for each item k, the absolute estimated biases jB̂kðs ð1Þ; : : : ;s ðqÞÞj are accumulated over

consecutive subsets of the sample dataset which have been randomly reordered in such a

way as to leave distinguished demographic cells intact, and m*
k is the ratio of this absolute

total to t̂y ðkÞ . The result on the SIPP 96 data is given in Table 4. The logistic regression

models, especially F and III, do better, item by item, with far fewer parameters than the

101 distinguished-cell response fractions

i[Ac>S

X
ðri=piÞ=

i[Ac>S

X
ð1=piÞ

(estimates of the cellwise response probabilities) by which the adjustment cell model

divides the survey weights in cell Ac. Model F is still the overall best choice, with III a

close second, and this conclusion becomes stronger when we find it confirmed in Table 6

also by the relative total absolute bias which simply sums cellwise absolute biases without

any reordering of sample items.

4. Models and Metrics Using Raked SIPP Weights

So far, metrics have been calculated and models evaluated based on direct adjustments

using substituted estimates of response probabilities, with weights changing according to

Table 6. Relative accumulated absoluted bias values m̂Cum
k as in (6), averaged over k ¼ 1; : : : ; 12, for each of

6 logistic regression models and the Adjustment Cell model, for each of Waves 4 and 12, using SIPP 96 data with

distinguished demographic (raking) cells as partition elements Ac

ModA ModC ModD ModF ModI ModIII Adj.Cell

Wave 4 .0483 .0444 .0448 .0439 .0462 .0460 .0448
Wave 12 .1226 .1198 .1203 .1061 .1119 .1080 .1307

Table 7. Estimated Metric Values m̂k, m̂
*

k, and mCum
k based on SIPP 1996r model-adjusted weights which have

been raked as in SIPP production. Partition elements Ac in the latter two metrics are closely related to the raking

cells. Displayed metric values for Waves 4 and 12 for selected models have been averaged over k

Metric Wave ModA ModC ModD ModF ModI ModII Adj.Cell

mk 4 .0099 .0057 .0047 .0057 .0046 .0045 .0083
12 .0181 .0157 .0163 .0120 .0166 .0113 .0181

m
*

k 4 .0099 .0056 .0046 .0056 .0046 .0045 .0082
12 .0183 .0159 .0164 .0121 .0165 .0113 .0182

mCum
k 4 .0392 .0382 .0380 .0381 .0414 .0411 .0377

12 .0887 .0895 .0890 .0881 .0910 .0895 .0864
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the rule 1=pi r ri=ðp̂ipiÞ. In practice, within government surveys such as SIPP, weights

are adjusted and then raked so that population totals over certain demographic cells match

the totals found through other, more accurate, censuses and surveys. For this reason, we

recalculated the metrics for the cell-based adjustment model and the models displayed in

Table 1 based on adjusted weights which were put through a final stage of raking. The

raking method was as described by Tupek (2002) and implemented in the 1996 and 2001

SIPP panels, based on cells defined in terms of sex, age, race, family structure and

Hispanic origin.

Summary results, averaged over survey items k (11 items plus population count), are

presented in Table 7 for selected models and the three metrics mk, m
*
k , and mCum

k . The effect

of raking can be assessed by comparing these averaged post-raking metric values with the

corresponding unraked-weight results in Tables 4–6. When the weights have been raked,

the performance of the different models is not nearly so easy to distinguish as without

raking. Thus, Models C, D, F, I, and III have very nearly the same performance, with

respect to each of the three metrics mk, m
*
k , m

Cum
k . With respect to the first two metrics, the

best model (the only one that does well for both Wave 4 and 12) is Model III, and all of the

good models (C,D,F, I, III in the Table) clearly outperform the cell-adjustment model.

However, with respect to mCum
k , no model outperforms simple cell-based adjustment after

raking, although Model F comes close.

What do the Tables tell us about the impact of raking, if extensive model-based

adjustment is to be done? From the point of view of the metric m̂Cum
k , it is clearly better to

rake and not to adjust via logistic-regression models. But this is largely because of the

slightly artificial decision to define distinguished cells Ac extremely close to the cells used

for population-control raking. However, for the other two metrics, we provide the

comparison between model-based adjustments with and without raking in Table 8.

According to the metrics mk and m*
k , with the best models (F,I,III) it hardly matters

whether raking is done or not, but there is no real benefit and may even be some loss in

adjustment accuracy, especially for Models F and III.

5. Conclusions

This article has developed metrics for nonresponse-adjustment effectiveness, calculated

after randomly re-indexing the survey sample and calculating maximum discrepancies

Table 8. Estimated metric scores m̂k and m̂
*

k from SIPP 96 data, averaged over survey items k, for Unraked and

Raked adjusted weights formed using selected Logistic-regression (D,F,I,III) models and adjustment-cell model

Metric Raked Wave ModD ModF ModI ModIII Adj.Cell

mk No 4 .0057 .0034 .0039 .0039 .0123
12 .0281 .0078 .0137 .0088 .0474

Yes 4 .0047 .0057 .0046 .0045 .0083
12 .0163 .0120 .0166 .0113 .0181

m
*

k No 4 .0065 .0044 .0046 .0045 .0127
12 .0304 .0110 .0163 .0113 .0493

Yes 4 .0046 .0056 .0046 .0045 .0082
12 .0164 .0121 .0165 .0113 .0182
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over consecutively indexed subdomains. The objective was to discount any advantage

which an adjustment regression model might achieve toward eliminating whole-sample

nonresponse biases by including survey attributes as predictors. That is why many of the

logistic regression models we used to adjust for attrition in SIPP included some or many of

the survey items. However, when applied to SIPP 96 data, the metrics developed did not

have the expected effect. We expect AIC-based model assessments generally to prefer

models whose cross-validated or out-of-sample predictions are better, but that was not the

objective here, and metric-reducing model-based weight adjustments seem to favor

overfitting of the data. Those regression models which incorporated most or all of the

interesting survey attributes did exceptionally well with respect to the new metrics, even

though some of those models would not have been preferred from examination of

likelihood ratios or deviance. While the same adjustment strategy could not be tried if the

selected set of interesting survey attributes were too large, the strategy seems to be a good

one in the SIPP setting, where the selected set of attributes was still small enough to

contain variables which were al-most all highly predictive of response and not redundant

except for the triple Emp, UnEmp, NILF which partitions the population by definition.

One important check on the usefulness of highly parameterized adjustment models is to

see whether their benefits, as measured by the metrics developed here, disappear when the

adjusted weights are raked as they often will be in practice. That did happen here with

respect to the most conservative of the metrics, mCum
k . But what we found with respect to

the other two metrics is that the best nonresponse models in the SIPP 1996 panel perform

almost equally well whether their adjusted weights are raked or not, and that – from the

vantage point of our metrics – there may not be much value in extensive raking when a

highly effective nonresponse adjustment model is used.
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