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Abstract. Several large surveys administered by
the Census allow responses in several different modes
(mail, telephone, personal interview), in some cases
— as in the American Community Survey (ACS) —
after sub-sampling from those sample units which
have not responded at any earlier stage. Analysis
of the survey results usually proceeds by weighting
responses roughly by inverse unconditional proba-
bility of response to the survey. But often, non-
response in the different modes can be modelled
in terms of demographic and geographic variables
(such as dwelling type and aggregated characteris-
tics related to ethnicity and socieoeconomic status),
and the results of such models derived from pre-
vious recent surveys could be used to improve the
estimation of population totals and domain subto-
tals which is ordinarily the goal of large surveys.
This paper applies concepts of sample-survey theory
to investigate the theoretical improvements possible
with both correctly and incorrectly specified models,
and illustrates the issues and improvements using
data from the 1990 decennial census. In the setting
of models of nonresponse no worse than those fit-
ted to one state’s decennial-census data and applied
to another similar state, the mean-squared error is
definitely improved by incorporating the model into
sample-weighted estimators, through an adjustment
factor which is constant across PSU (within state).

This paper reports on research undertaken by Census
Bureau staff. It has undergone more limited review
than official Bureau publications, and is released to
inform interested parties of research and encourage
discussion.

1. INTRODUCTION & PROBLEM

Suppose that individuals in a sampling frame U
are selected for inclusion in a large survey S
with single and joint inclusion probabilities respec-
tively πi, πij , and that each individual can re-
spond to the survey in a succession of K possible
modes, with mode 1 being the most direct, such as

mail-response in the decennial census or American
Community Survey. (In the ACS, the modes are:
Mail-, Telephone-, and Personal-Interview response.
In the decennial census, the modes are Mail- and
Interviewer- response, but the census data can be
analyzed further, as in Slud (1998, 1999, 2001) by
treating as different modes the responses to inter-
viewers within successive quantile-intervals of inter-
viewer followup time within ARA.) Of those individ-
uals selected for initial inclusion and not responding
in any of modes 1, . . . , k, where k = 1, . . . , K−1,
a fraction ak are randomly sub-sampled for at-
tempted enumeration under mode k + 1. For each
individual i ∈ U , denote by Jik the indicator
that individual i would, if selected and followed
up, respond to the survey in mode k and no earlier
mode. Then

∑K
k=1 Jik = Ji is the indicator that

individual i responds in any mode to the survey.
Suppose that each individual in the sampling

frame comes equipped with a vector Xi of predic-
tor variables for response, which are observable or
known in advance of actual enumeration. Such pre-
dictors would include geographic area, along with
variables such as housing type which would be
known from a master address list and aggregates
from recent previous surveys of demographic charac-
teristics for the neighborhood (such as census block-
group or tract) containing the individual. A list
of such predictors based on block-group aggregated
census long-form data is provided in Slud (1998).
Assume that the conditional probabilities hik of
survey response by individual i in mode k, given
nonresponse in each of modes 1, . . . , k − 1, have
been modelled and estimated as parametric func-
tions hk(Xi) = hk(Xi, β

(k)) of the predictor vari-
ables, with the estimated parameters (e.g., regres-
sion coefficients in generalized linear models) de-
noted β(k). The model implemented below in anal-
ysis of 1990 decennial census data, following Slud
(1998, 1999, 2001), is the logistic regression model

hk(x, β) = ex·β / (1 + ex·β)

The predictors Xi are mostly the same across differ-
ent response modes, except that, as in Slud (1999,
2001), block-group aggregated rates of response by



earlier modes than k are used in modelling the rate
of response by mode k. Thus, based on predictors
Xi, the modelled probabilities of response in the k’th
mode, with (estimated) model-coefficients β(k), are

hik ≡ P (Jik = 1|Xi, Jij = 0, j <k) =
eXi·β

(k)

1 + eXi·β(k)

Assume that the parametric model is a fixed-effect
model only. Then prospectively, before sampling,

p0
ik =

∏

1≤j<k

(1− hij) · hik

gives the probability with which individual i would
respond to the survey in mode k and not ear-
lier, if selected for inclusion and followed up that
far. Taking into account the probabilities with
which nonrespondents at each stage are included in
later stages of followup, we obtain the probabilities
P (Jik = 1) =

pik =
k−1∏

j=1

{(1− hij) aj} hik = p0
ik

∏

1≤j<k

aj

with which individuals assumed to be included in the
initial sample are sampled up to and respond within
the k’th response mode. Note that as a practical
matter, models and estimates for the final-stage re-
sponse probabilities hiK are largely speculative,
because they reflect rates of interview-refusal and
omission (e.g., because of failure of interviewers to
make personal contact or find proxies) concerning
which there is no direct data. Only a followup or
post-enumeration study could give more than a hy-
pothetical cast to estimates of these probabilities.
However, if these rates are understood reflect re-
sponse by mode for units on a master address-list
(like the MAF in the decennial census), then even
the final rates hiK could be meaningfully estimated
from survey data and used in weighting.

The data recorded from the survey will be, for
each individual i ∈ S, the response indicator vector
(Jik, k = 1, . . . ,K) together with a label Ai for the
latest mode under which individual i is selected for
followup. In case Ji = 1, the label Ai is equal to
that mode k for which Jik = 1, and an attribute
value yi (such as number in household, or total
household income) is also recorded.

The survey data are to be used to estimate the
frame population total t =

∑
U yi for the attribute

in question, and the estimators to be considered
all take the form of a weighted linear combination
t̂w =

∑
S

∑K
k=1 wik Jik yi. The objective of the

present research is to investigate what the optimal
weights wik are, from the vantage point of min-
imum mean-squared error; how much difference it
makes to use them by comparison with the weights
one would use if the probabilities pik were com-
pletely unknown, and how sensitive the weights are
to correct specification of the model hk(Xi, β

(k)).

Remark 1 The related problem of optimally de-
signing sub-sampling rates ak, without allowing them
to depend on location and neighborhood demographic
characteristics, has been studied in Elliott, Little &
Lewitzky (2000). 2

A primary motivation for the work described here
was to investigate the desirability of demographic-
model-based weighting adjustments to surveys like
the ACS. In particular, our interest centers on non-
response weighting adjustments derived from pre-
dictive models. However, it is in the nature of non-
response that (without additional followup or cal-
ibration sampling studies) design-unbiased esti-

mation is unattainable. For a description of the
existing approach to ACS weighting — which is done
essentially through constant (within-state) multi-
plicative factors for subsampling, seasonal response-
rates by mode, and noninterview-rate adjustments
— see Dahl (1998) and Adeshiyan (1998).

The problem of nonresponse and weighting ad-
justments is generic for sample surveys (see Groves
et al. 1999). We focus here on aspects peculiar to
surveys with multiple response modes and a sub-
sampling design like the ACS, under which models
for nonresponse would naturally be built for each
response mode.

2. MSE FORMULAS, OPTIMAL WEIGHTS

We begin by obtaining formulas for the bias and
variance of the statistic t̂w, and by reducing the set
of weights {wik} to consider. First, recalling that
E Jik = pik by definition, we find

E(t̂w) = E
(∑

i∈U

∑

k

I[i∈S] yi wik Jik

)

=
∑

i∈U

∑

k

πi wik pik yi

Thus the bias in estimating
∑

U yi by t̂w is

∑

i∈U

yi

{
πi

∑

k

wik pik − 1
}

If the quantities pik were known or accurately es-
timated, then for the estimator t̂w to be approxi-
mately unbiased for all possible attribute-values yi,



the weights wik would have to satisfy

πi Σ
K
k=1 wik pik = 1 (1)

Denote the actual probability of nonresponse to the
survey, for an included (sampled) unit i, to be

qi ≡ 1 − ΣK
k=1 pik (2)

Remark 2 The unbiasedness condition (1) cannot
generally be satisfied, even approximately, in model-
free fashion. It would force weights wik to vary with
different i whenever the quantities πi(1− qi) do.
Since the qi are not known, approximating them
involves models and estimates. 2

Straightforward algebraic manipulation of the ex-
pression (bias squared plus variance) for the mean-
squared error (MSE) of t̂w yields a form from which
it is easy to conclude that the MSE is made as

small as possible by equalizing the allowed

weights wik over all response-modes k for

each individual i, specifically by putting

wik = w̃i = (πi Σ
K
k=1 pik)

−1 = (πi (1− q̃i))−1 (3)

for some set of values q̃i. (Details of this verification,
as well as of the following MSE formula (4), can
be obtained in an unpublished report Slud 2002.)
Assume from now on that wik = w̃i are defined as
in (3), not varying over response-mode, and define a
modified ‘attribute’:

ỹi = yi (1− qi) / (1− q̃i)

Then the formulas for bias and variance of t̂w lead
to the general formula: MSE(t̂w̃) =

(∑

U

(yi − ỹi)
)2

+ Var(t̂π,ỹ) +
∑

U

ỹ2
i qi

πi (1− qi)
(4)

where following Särndal et al. (1997), we denote
by t̂π,ỹ the ordinary Horvitz-Thompson estima-
tor (for the population total of the attributes y
based upon a single response-mode) with the same
inclusion-probabilities πi, πij as above, for which
the theoretical variance is

V (t̂π,ỹ) =
∑

i, j∈U

ỹi ỹj
πij − πiπj

πiπj
(5)

Note that the comparison, across different choices
q̃i, of variances and MSE’s depends not only upon
the initial sampling fraction and the population co-
efficient of variation of the attribute y, but also on
population characteristics relating yi to qi .

In the setting of balanced random sampling with-
out replacement , the variance formula (5) specializes
in a well-known way. Denote by πi ≡ π the proba-
bility with which each individual i is included in the
initial sample, and by s2ỹU = 1

|U |−1

∑
U (ỹi− ỹU )

2

the frame-population modified-attribute variance.
Then the term (5) becomes

|U | (1/π − 1) s2ỹU (6)

Several possible choices of q̃i are of particular
interest in defining weights w̃i as in (3), and we la-
bel these choices for later comparison. First, denote
as choice (a) the correct demographic weights using
q̃i = qi of (2). Choice (b) is the population-wide
nonresponse rate

q∗ = 1 − |U |−1 ΣUΣk≤K pik (7)

This may be the most obvious choice for q̃i to be
constant over i, but it is not the best. In fact,
we will find below that bias-squared, the first of the
three terms on the right-hand side of (4), is usually
the dominant term in MSE. Thus the best constant
to use should be approximately the one which zeroes
out the bias, that is, which satisfies the equation

Σi∈U yi (qi − q̃) = 0

This value, which we define as choice (c) for q̃i, is

q̃opt = Σi∈U yi qi /Σi∈U yi (8)

So far, these choices (a)–(c) provide useful MSE
benchmarks but are not feasible, in the sense that
they describe estimators which depend on the un-
known values (2). The three corresponding choices
based upon empirically modelled and estimated non-
response probabilities p̂ik are (d), (e), and (f).
Specifically, (d) is the choice q̃i = q̂i ≡ 1 − Σk p̂ik;
(e) is the population-averaged version

q̂Av = 1 − |U |−1 ΣUΣk≤K pik (9)

and (f) is the choice of q̃i as the set of weighted-
average estimated nonresponses

q̃mod = Σi∈U yi q̂i /Σi∈U yi (10)

3. DATA ANALYSIS FOR 1990 CENSUS

We first specialize the comparison between MSE’s
(4) to a case most relevant to the ACS, in which the
attribute yi of interest can be regarded as the indi-
cator of a valid household enumeration for the index
i on the Master Address File (MAF) if household



i were followed up without time-limitation. (Differ-
ent, but also relevant, choices would be to view yi as
the number of valid enumerated persons within each
household, or the household income or indicator of
poverty or of participation in a program like Food
Stamps, but we do not pursue these possibilities for
now.) Then the population total

∑
U yi is be in-

terpreted as the true count of households, and (2)
is the probability within a sample survey like ACS
that a household on the MAF would not be enumer-
ated up to and including the final (K’th) response
mode. Although undercount and refusal-rates are
usually small — of the order of one percent up to a
few percent — it may still happen that differences
among qi for addresses i with different demo-
graphic and geographical characteristics can differ
by sizeable factors. When this is true, there is some
hope that model-assisted weighting can improve the
accuracy of estimates from the survey.

The data used in the present comparison are the
1990 decennial-census files previously used by Slud
(1998, 1999, 2001) in modelling response to the cen-
sus, by mail or by later ‘modes’ of personal response
to followup enumerators within successive quantile
intervals of followup time within ARA. These files
include tallies by block-group of the numbers (of
HU’s) responding by mail, before the 50th percentile
followup time within the ARA, between the 50th and
75th, between the 75th and 90th, and after the 90th.
In addition, the files contain geographic and demo-
graphic information on the block-group, plus the
one variable housing-type (htyp) which referred to
individual HU’s (and was known from the address-
file, before enumeration). These predictive variables
were used in Slud (1998, 1999, 2001) to fit logistic
models for response-rates by state, with numbers of
predictors ranging from about 20 to about 70, de-
pending on the size of the state and the mode of
response. (The greater numbers of variables arose,
from BIC-like penalized-deviance model-fitting, in
models in large states either for mail-response or
for response before the 90th percentile of enumer-
ator check-in times, among HU’s which had not re-
sponded by the 75th percentile.) The fitted models
are used here as the models hk(Xi, β) specifying
conditional response probabilities hik for individual
HU’s in the i’th htyp-by-block-group stratum within
a state to respond in mode k, given that it had not
responded earlier. (Then the estimated uncondi-
tional response probabilities p̂ik are derived from
hik and aj specified below.) The response-modes
chosen for illustration are k = 1 for Mail-response,
and then for HU’s which did not respond by mail,

k = 2 for response before the 50th percentile of ARA
check-in time, k = 3 for response between the 50th

and 75th percentiles of check-in time, and k = 4
for response between the 75th and 90th percentiles.
For present purposes, we treat the HU’s which did
not respond by the 90th percentile of check-in times
as though they did not respond at all.

To mimic the sub-sampling scenario of ACS, we
define and fix throughout the rest of this paper an
inclusion probability of π = 1/2 followed by sub-
selection probabilities ak = 0.7 for later stages
k = 1, 2, 3 among HU’s which have not responded in
mode ≤ k. (In ACS, all mail nonrespondents are fol-
lowed up for telephone (CATI) response, and CATI
nonrespondents are subsampled with probability 1/3
for further (CAPI) follow-up. The overall subsam-
pling fraction of 1/3 is what we imitate by choice of
aj = 0.7, j = 1, 2, 3, since (0.7)3 = 0.343 ≈ 1/3.)
We compare the elements and total of the MSE for-
mula (4), for this choice of subsampling probabili-
ties and inclusion-rate π = 0.5 with simple random
sampling, for several states and several choices of
weights based either on a ‘correct’ model (ie one fit-
ted to the same state for the same census data), no
model, or on an incorrect model, such as one based
on a neighboring state. Recall that the attribute yi
of primary interest here is the indicator of response
(in mode k ≤ 4). We display for each state, model,
and choice of q̃i used in weights w̃i, the following
quantities: Bias as given by the expression inside
the parentheses of the first term in (4), the total
MSE as given by (4), and also the root-MSE divided
by the actual number of nonresponders, denoted
rMSE/Nrsp. Always MSE = Bias2+Var1+Var2 ,
and rMSE/Nrsp =

√
MSE/

∑
U (1 − yi). Quality

of estimation is assessed using rMSE/Nrsp, just as
coefficients of variation are used in survey practice.
Values of .01 to .03 are typical of state models which
fit well, and more generally values up to .1 allow con-
servative confidence intervals with value 20% of the
nonresponse numbers being estimated.

Consider first Delaware (DE), which had 219509
HU addresses in 1990 within the 727 htyp by block-
group strata containing at least 21 HU’s. In DE,
10662 HU’s did not respond by the 90th percentile
of their ARA’s check-in times. Estimation error in
the count

∑
i∈U yi of responders is likely to range

up to 2000, we expect MSE to range up to 4.e6.

For the six plans (a)-(f) of choosing q̃i in (3),
the MSE results on the DE data (using the DE
model) are displayed in Table 1. For comparison,
the Table provides analogous MSE’s for MD and
MN, which respectively had 84883 and 35321 non-



Table 1. MSE components for DE, MD and MN
data of six plans (a)-(f) for weights w̃i in (3) based
on choices for q̃i. Model-based plans (d)-(f) used
models fitted to same-state data.

State Plan Bias MSE rMSE
Nrsp

DE
(a) qi 0 85860 0.028
(b) q∗ 1001 1080454 0.098
(c) q̃opt 0 78358 0.026
(d) q̂i 158 108391 0.031
(e) q̂Av 699 567868 0.071
(f) q̃mod 242 137074 0.035

MD
(a) qi 0 665393 0.010
(b) q∗ 6337 40770674 0.075
(c) q̃opt 0 613595 0.009
(d) q̂i 1478 2832153 0.020
(e) q̂Av 4742 23107527 0.057
(f) q̃mod 1959 4453478 0.025

MN
(a) qi 0 357278 .017
(b) q∗ 2387 6031873 .070
(c) q̃opt 0 331459 .016
(d) q̂i 8421 71263655 .239
(e) q̂Av 9456 89750630 .268
(f) q̃mod 8333 69773960 .236

responding HU’s. Certainly it seems from the com-
parisons for DE and MD that it is worthwhile to use
predictively modelled response probabilities to de-
fine weights, since the information to approach the
truly optimal weights of settings (a) or (c) will never
be available. Stratum-dependent weights q̃i de-
rived from a good predictive model, as in (d), seem
to provide nearly as good MSE’s, but remarkably,
constant weights q̃mod in (f) are virtually just as
good. Note that the relatively small changes among
constant weights in DE — q∗ = 0.14663 in (b), to
q̂Av = 0.14786 in (e), to q̃opt = 0.14378 in (c), and
finally to q̃mod = 0.14477 in (f) — have sizeable
consequences in MSE. However, the MN results in
Table 1 show that, even in a model used in (3) on
same-state data, unanticipated biases can results in
unsatisfactory rMSE/Nrsp values up to 25%.

One way of trying to assess the robustness of the
model-based weighting-adjustment plans (d)–(f) is
to see how much noise is needed to corrupt the stage-
wise PSU predictions before the derived MSE’s for
the recommended plan (f) become worse than for
plan (b), in which the overall true response rate
was used in raw form, not broken down by response
mode. In each line of Table 2, we display MSE val-

Table 2. MSE’s of three model-based plans for DE
data, with DE model predictors at each of 4 stages
corrupted by additive noise on logit scale with stan-
dard deviation σe. Asterisks (∗) show cases with
(f) MSE > 4.08e7 = (b) MSE.

σe (d) MSE (e) MSE (f) MSE
0 2.82e6 2.31e7 4.44e6

0.01 3.04e6 2.37e7 4.70e6
0.1 6.57e6 3.01e7 7.15e6
0.3 4.33e7 5.83e7 1.77e7
0.4 9.20e7 7.78e7 2.40e7
0.4 2.11e8 1.75e8 8.09e7 (*)
0.5 2.27e7 1.54e7 6.00e7 (*)
0.5 2.29e7 1.52e7 6.25e7 (*)
0.6 5.74e7 3.11e7 1.43e8 (*)

ues derived from ‘corrupted’ predictive-model val-
ues pauxik satisfying logit(pauxik ) = logit(pmod

ik )+εik,
where pmod

ik are the fitted model values and εik
are iid simulated N (0, σ2

e) deviates, with standard
deviations σe shown in the first column. Recall, for
purposes of comparison, that the MSE values under
plans (a), (b), (c) are respectively 6.65e5, 4.08e7,
and 6.14e5. Each MSE value in the (f) column which
exceeds the plan-(b) MSE value is followed by an as-
terisk (∗). From Table 2, we can see that additive
noise on logit scale of up to 0.3 or 0.4 in the model-
predicted PSU response rates by mode will usually
still leave the MSE’s for plan (f) less than the MSE’s
for plan (b). This leaves a comfort zone: this stan-
dard deviation is only slightly less than the PSU
random-effect standard deviation of .50 to .55 fitted
(Slud 1998) in a mixed-effect (random-intercept) lo-
gistic regression for Mail-Response.

To make these calculations more realistic, we con-
sider several cases of using reasonable but wrong
models. Table 3 summarizes the relative perfor-
mance of various neighboring states’ predictive mod-
els versus models fitted and applied on the same
states’ data. Correlations are shown between pre-
dicted and actual rates of response, at each of the
4 (MR, rsp50, rsp75, and rsp90) check-in stages
considered by Slud (1999, 2001), at the level of
block-group-by-htyp stratum, for each of 5 pairs
of states. These correlations vary considerably by
stage, and are generally a little but sometimes a lot
worse at each stage when based on a neighboring
state’s model.

In contrasting the MSE performance of model-
based estimators when the model is that of the same
versus a neighboring state, we restrict attention in
Table 4 to the plans (b) from (7) and (f) from (10))
for assigning q̃ in the weights (3). Table 4 shows



Table 3. Correlations between data and model pre-
dictions for response rates at each of four checkin
stages, at block-group-by-htyp level, in 1990 census.

Data Model MR rsp50 rsp75 rsp90
OH PA .80 .04 .16 .12
OH OH .82 .10 .19 .23
PA OH .83 .12 .19 .17
PA PA .85 .18 .22 .15
MD PA .80 .16 .15 .11
MD MD .83 .22 .16 .14
MN WI .78 .13 .25 .21
MN MN .82 .10 .31 .30
OR WA .76 .06 .07 .26
OR OR .80 .12 .11 .28
WA OR .77 .04 .08 .17
WA WA .79 .13 .16 .28

Table 4. MSE’s in 1990 data of two weighting plans
[(b) as benchmark, and (f) as model-based choice]
for various states, using models from either the same
or a neighboring state.

Data Model Plan Bias MSE rMSE
Nresp

MD MD (b) 6337 4.077e7 .075
MD PA (f) -1794 2.093e6 .017

OH OH (b) 8606 7.520e7 .068
OH PA (f) 39663 1.574e9 .310

MN MN (b) 2387 6.032e6 .070
MN WI (f) -2455 6.357e6 .071

OR OR (b) 2231 5.306e6 .018
OR WA (f) -231 3.805e5 .019
WA WA (b) 5873 3.513e7 .081
WA OR (f) 4352 1.958e7 .060

the variety of biases and values rMSE/Nrsp achieved
in the same set of state-pairs as in Table 3. (The
numbers of non-responder HU’s in these states are:
128011 in OH, 84883 in MD, 35321 in MN, 32875 in
OR, and 73252 in WA.

The MSE’s in Table 4 for model-adjusted weight-
ing estimates (f) for MD based on the PA model are
satisfactorily small. Based on the evidence of Table
3, greater degrees of model misspecification are very
likely, and Table 4 shows that while rMSE/Nrsp al-
ways remains well under 0.1 for same-state models,
it can become awful for misspecified-model-based
weighting plan (f), as it did for the PA model on OH
data. The table confirms that model-based weight-
ing adjustment has risks ! But strangely, on MN
data, while we saw in Table 2 that plan (f) yielded
a very bad rMSE/Nrsp of 0.24 using its same-state
model, the value for (f) on MN data under the WI-
based model has the much better value 0.71.

4. CONCLUSIONS

This paper has studied sample-weighted estima-
tion of population totals, based on survey data col-
lected in several stages, in which nonresponders from
earlier stages are sub-sampled at later stages. The
theoretical and data-analytic comparisons among
MSE’s for weighting plans lead to two conclusions:

(i) Weights for analyzing such survey data should
be constant across response modes, although vary
across demographically distinct PSU’s.

(ii) The weighting adjustment form (f), with
weights w̃i ≡ 1/(πi(1 − q̃mod)), seems in all cases
studied to be close to optimal. Although it appears
robust to some degree of model misspecification, un-
acceptably high MSE’s result in cases of extreme
misspecification. But no method of estimating sur-
vey nonresponse can be free of such model-bias.

Further research is needed to check whether
the magnitudes of model misspecification between
decennial-census and ACS datasets, or of ACS
datasets from one time-period to another, are of the
order of those investigated here.

5. REFERENCES

Adeshiyan, S. (1998) A study of the weighting ad-
justment procedures for the American Community
Survey. Proc. Amer. Statist. Assoc. on Survey Re-
search Methodology, 178-183.

Dahl, S. (1998) Weighting the 1996 and 1997 Amer-
ican Community Surveys. Proc. Amer. Statist. As-
soc. on Survey Research Methodology, 172-177.

Elliott, M., Little, R., and Lewitzky, S. (2000)
Subsampling callbacks to improve survey efficiency.
Jour. Amer. Statist. Assoc. 95, 730-738.

Groves, R. (1999) Survey Nonresponse. New
York: Wiley.

Särndal, C., Swensson, B., and Wretman, J.,
Model-Assisted Inference in Survey Sam-

pling. Springer-Verlag: New York 1997.

Slud, E. (1998) Predictive models for decennial cen-
sus household response. Proc. Amer. Statist. As-
soc. on Survey Research Methodology, 272-277.

Slud, E. (1999) Analysis of 1990 decennial census
checkin-time data. Proc. Fed. Comm. Statist. Meth-
odology Res. Conf., Pt. 2, pp. 635-44, June 2000,
Statistical Policy Working Paper 30, OMB.

Slud, E. (2001) Order selection, random effects and
multilevel predictors in modelling Decennial Census
response. Proc. Amer. Statist. Assoc. on Survey Re-
search Methodology.


