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Abstract. Meta-analysis is a class of techniques for combining the results of many small studies to
reach a unified inference for a parameter of interest, for example a parameter quantifying treatment
effectiveness. Often, the statistician has from each individual study only an estimator of the param-
eter of interest, together with an estimator of standard error, and the separate estimates are treated
as data and fitted within a so-called ‘meta-regression’ model, with study as a categorical predic-
tor and the parameter of interest regarded as a common mean, and with error term consisting of a
constant-variance error plus an independent study effect with standard deviation equal to the sepa-
rate estimated study standard error. Occasionally, patient-level data including covariates are available
from all of the component studies, in which case a pooled patient-level analysis can be conducted
including fixed covariate effects, plus study effects as random intercepts, and possibly also including
random treatment-by-study interactions. Comparisons are sometimes published in biomedical set-
tings between the meta-analysis results and the results of pooled mixed (generalized) linear model
analyses. This paper reports theoretical and simulation results regarding the biases of meta-analysis
estimates versus pooled model estimates when the latter are correct, showing that in linear models,
these biases are generally small, especially when treatment-allocation is balanced and covariate and
error distributions are symmetric.

1 Introduction

Meta-analysis is a large field of statistical methodology (Hartung, Knapp and Sinha 2008), with ex-
tensive applications in biomedical statistics, educational statistics and social sciences. The unifying
thread in this field is the use of summary statistical point estimates and standard errors for a parameter
which is shared across a number of independent studies to provide a combined inference for the com-
mon parameter. Generally, the point estimates from the separate studies are treated as data within a
combined model, often with random study effect standard deviations assumed to be given or estimated
by the estimated standard error from the separate studies. Such an aggregate level analysis combining
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multiple studies can usually not rely on access to unit- or patient- level data from the separate studies.
However, sometimes such access is possible, in which case one could confront the meta-analysis with
a unified multilevel statistical model at unit level, with ‘study’ as a clustering or group variable which
may require modeling with group random effects and possibly interaction random effects with any
fixed-effect covariates in the separate studies. Examples of such comparative analyses are Jiao et al.
2010, and Murphy et al. 2009. When such comparisons have occasionally been made in applied set-
tings, the results (estimates and confidence intervals for combined treatment effects) of the meta- and
unified analyses are often quite similar. Nevertheless, use of meta-analytic techniques would seem to
require strong assumptions about the ways in which treatments, covariates, and centers interact. To
learn about the empirical agreement among meta- analytic and unified unit-level model analyses of
treatment effect, one could also regard center within a large multi-center clinical trial as the study
cluster variable and perform both types of analyses along with simulation experiments based on real-
istic parameters for various models of the combined patient-level data. This approach was followed
by DeMissie (2009) using the ECOG EST 1582 lung cancer clinical trial data previously analyzed by
Gray (1994).

The purpose of the present paper is to examine necessary conditions for agreement and exam-
ples where such agreement can fail, within the important context of mixed effect, not necessarily
Gaussian, linear models for treatment effect within randomized clinical trials. To narrow the focus
of this research, we restrict attention first to the case of trials with quantitative responses, typically
either log survival times or the results of a continuous bioassay (size of tumor, level of chemical
in the blood, etc.) For the survival-time setting, we assume for simplicity that censoring can be ig-
nored, either because survival rates are very small or because almost all censoring is administrative,
occurring after a time-on-test interval that is the same for all patients. Next, we restrict attention to
randomized-allocation patient-level models which are linear, with terms which may include fixed-
effect interaction terms between treatment and covariates and random effects and interactions among
center and treatment and covariates.

Thus, the underlying models we consider — as being general enough to accommodate many but
not all phenomena of interest — are of patient-level quantitative responses at the level of patient
j = 1, . . . ,ni within study-center i = 1, . . . ,m, as expressed by

Yi j = µ + ui + ξi j (ϑ + vi) + X ′
i j(β +bi) + ξi j Z′i j(γ+ρi) + εi j (1.1)

where Yi j denotes the real-valued quantitative response such as log survival time; Xi j and Zi j

respectively denote d-dimensional patient-level vectors of observed baseline covariates (including
possible interaction terms among them); ξi j denotes the randomized binary treatment indicator;
ui, vi, bi, ρi are respectively center random-effects, center-by-treatment random effects, treatment
random effects, and treatment-by-covariate-by-center random effects; and εi j are random error-
terms. The unknown fixed-effect parameter ϑ is taken to be the common parameter of interest,
at least in all cases where γ ≡ 0, but β and the variance scale-parameters of the random effects
and errors are unknown nuisance parameters. Within model (1.1), the columns of Zi j are generally
also included among those of Xi j, and for interpretability of the model coefficients, the Xi j and
Zi j vectors are generally centered at 0 when averaged over i. The different random-effect terms
and errors εi j are assumed to be jointly independent, and each of these error-terms is assumed iid
across its index values. At least initially, the random-effect terms ui, vi, bi (and ρi when present) are
assumed to be normally distributed with mean 0. The distribution of εi j is assumed to be known up
to a scale parameter but not necessarily normal.
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Most treatments of meta-analysis within the context just outlined have restricted attention to nor-
mally distributed mean-0 response errors εi j (Hartung, Knapp, and Sinha 2008, Chapters 5–8). A
different example, the one studied by DeMissie (2009) following Yamaguchi and Ohashi (1999),
concerned logarithms of survival times assumed to follow a Weibull distribution with the logarithm
scale-parameter following a linear fixed-effects model in terms of covariates along with normally
distributed mean-0 ‘frailty’ terms; but in such an example, the reciprocal of the Weibull shape param-
eter acts as an unknown scale parameter for εi j, which otherwise has the known distribution with
extreme-value survival function exp(−ex).

Fixed-effect treatment-by-covariate interactions are a topic of considerable interest in studies of
the ‘treatment of choice’ problem (Byar 1985, Gail and Simon 1985, Schemper 1988, Russek-Cohen
and Gail 1993, and many others), but it is not very common to validate them strongly in clinical stud-
ies. This is because most clinical studies are powered primarily to detect treatment effects designed
to answer direct clinical questions. Moreover, when results of many small to moderate-sized separate
trials are published on the same treatment for the same disease, the separate studies may have insuf-
ficient power to answer even the direct clinical questions definitively — a deficiency that is often the
strongest motivation for meta-analysis — so that the possibility of treatment by covariate interactions
can hardly be addressed at the single-trial level. In the next Section of this paper, we consider first
the case γ = ρi = 0 where all such interactions are absent. This is the setting most likely to support
meta-analyses, due to the absence of first-order biases. In later sections, we address the impact of
such interactions on the interpretability of meta-analyses.

In a meta-analytic setting, each of the separate studies i would be analyzed for treatment-
effectiveness under the specialization of model (1.1) (ordinarily with γ = 0) to responses with fixed
study-index i, i.e., with respect to

Yi j = µi + ϑi ξi j + X ′
i jβ

(i) + εi j , j = 1, . . . ni (1.2)

and the estimated value ϑ̃i for ϑi would be published along with its standard error σ̃i. The parameter
ϑi can be viewed as combining fixed and random-effects ϑ + vi just as µi corresponds to µ + ui.
Then the published point estimators ϑ̃i would be analyzed (DerSimonian and Laird 1986; Normand
1999) as data within the (random-effect) Meta Analysis Model,

ϑ̃i = ϑ + v∗i + ei (1.3)

where σ̃i is treated as though known and non-random, where v∗i ∼ N (0, σ̃2
i ) and the independent

error-term ei has mean 0 and unknown scale-parameter σ2
e . The point and interval estimators of the

unknown common treatment-effect parameter ϑ are then used to draw combined-study conclusions
about treatment effectiveness.

The present paper is organized as follows. The next Section collects the available theoretical re-
sults, including new ones, concerning the consistency of meta-analyses with the true parameters un-
der a properly specified unified model of the type (1.1). The theme of that Section is that in the
linear-model context without treatment-by-covariate interactions, at least in the absence of censor-
ing, meta-analyses are generally highly reliable. Then Section 3 shows, by theoretical calculation and
parametric examples, that treatment-by-covariate interaction effects which differ among study cen-
ters can ruin this reliable performance. Several simulations, following the general plan of DeMissie
(2009), illustrate these points – both those favorable and those unfavorable to meta-analysis, using
parameters chosen from the multi-center ECOG EST 1582 lung cancer clinical trial analyzed in Gray
(1994).
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2 Consistency

Suppose that the distribution of the model errors εi j in (1.1) is arbitrary, subject to the usual reg-
ularity conditions for maximum likelihood (ML) estimation of location and scale parameters (van
der Vaart 1998, pp. 65, 68, 95). Then the regularity conditions are also satisfied for the full model
(1.1) and also for the separate center-level models (1.2) when the latter are properly specified in the
sense that γ ≡ ρi ≡ 0 in (1.1), and the random effects ui, vi, bi, are Gaussian with mean 0. One
might estimate parameters including ϑ using least-squares instead of ML estimation, but in more
complicated settings, e.g., those with censoring, estimating-equation or ML estimation methods will
lead to consistent and asymptotically normal estimates with ϑ̂i−ϑi = OP(1/

√
ni), where all center

sample-sizes ni are assumed large, and the asymptotic standard deviations of
√

ni (ϑ̂i−ϑi) are
estimated consistently within each study.

In the setting of the previous paragraph, the meta-analysis model (1.3) is properly specified. If
also the number of centers gets large, but at a rate of smaller order of magnitude than (nearly all of)
the center sample sizes, the meta-analysis leads to consistent estimation of ϑ. In other words, the
two-stage estimation within models (1.2) and (1.3) leads asymptotically to results consistent with, but
not identical to, those that would be produced by analysis of the unified patient-level model (1.1).

2.1 A rectangular-array formulation of meta-analysis

Recent literature has reached near consensus on the need for a random-effects formulation of meta-
analysis. However, meta-analysis is an area like many others where one might also formulate cluster
(here, study-center) differences as a large set of nuisance parameters, whose collective dimension
grows proportionately to the number m of clusters. If we view the design variables Xi j, Zi j as being
randomly generated, with (ui,vi,ρi) nonrandom, then the model (1.1) falls within the rectangular-
array parametric structure

(Yi j, Xi j, Zi j, ξi j)
indep.∼ f (y |(x,z,ξ); ψ,λi)gi(x,z)h(ξ) (2.1)

where (gi,ni) are chosen non-identically but with large-scale stability (as though iid from some
population of study-sizes and predictor-variable densities) as i = 1, ...,m, and

ψ = (µ, ϑ, β, γ) , λi = (ui, vi, bi, ρi)

This definition slightly generalizes the terminology of Li, Lindsay and Waterman (2003), who did not
allow non-iid regression terms.

The ‘rectangular array asymptotics’ of Li et al. (2003), show (in their univariate-parameter case,
with all ni = n equal) essentially that the ML parameter estimates of ψ are consistent when m, n
both get large in such a way that m = O(n), but that the ML estimates are not efficient when m
and n are of the same order. In the context of meta-analysis, the consistency result is of primary
interest. Unfortunately, in real biostatistical meta-analyses, the center or study sample sizes may be
comparable to or even smaller than the number of centers. Thus, to keep the nuisance parameter
dimension from growing prohibitively fast, meta-analyses must rely on random-effect formulations
of center variation among model coefficients, even though the random-effect distributions may be
completely conjectural.
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2.2 Meta- vs. Unified analysis in moderate samples

There are not many theoretical results directly comparing the meta-analytic estimates obtained from
(1.2) and (1.3) with those obtained from (1.1). One very clean and simple result was obtained by Olkin
and Sampson (1998), in a special case (although they allowed more than two treatments). Consider
the model (1.1) without regression terms (β = bi = 0, γ = ρi = 0), under the further restriction that
vi ≡ 0 (i.e., σv = 0), and with the terms ui treated as fixed effects. Then the least-squares
estimator of ϑi (which is also the ML estimator if εi j are iid normally distributed), whether ξi j are
fixed or random, is

ϑ̃i = Ȳ (t)
i· − Ȳ (c)

i· , where Ȳ (t)
i· =

∑ni
j=1 ξi j Yi j

∑ni
j=1 ξi j

, Ȳ (c)
i· =

∑ni
j=1 (1−ξi j)Yi j

∑ni
j=1 (1−ξi j)

Now, under the further restriction that the variances of these estimators ϑ̃i are all assumed to be
proportional to the known (i.e., reported) numbers

Σi ≡ 1/
ni

∑
j=1

ξi j + 1/
ni

∑
j=1

(1−ξi j)

the meta-analysis least-squared estimator (also the MLE when the errors in (1.3) are normal) is

θ̂ =
m

∑
i=1

(ϑ̃i/Σi)
/ m

∑
i=1

(1/Σi) (2.2)

Olkin and Sampson (1998) show by applying the Gauss-Markov theorem that the least-squares esti-
mator of ϑ in (1.1) coincides exactly with ϑ̂ defined in (2.2). This is not obvious due to the random
effect vi remaining in the unbalanced ANOVA model (1.1), but does follow because both ϑ̂ and
the ML estimator are unbiased linear combinations of the terms Ȳ (t)

i· , Ȳ (c)
i· , and their variances can be

calculated to be identical to σ2/∑m
i=1 (1/Σi).

This exact finite-sample result does not seem to generalize to models involving random center-
effects ui and especially to models with nonzero random treatment-effects vi.

2.3 First-order unbiasedness of ML estimates in (1.2)

Since study-center sample sizes ni are often rather small (of the order of dozens rather than hun-
dreds), it becomes important to know whether the moderate-sample biases of Maximum Likelihood
Estimators of ϑi in linear models (1.2) could cause noticeable biases in meta-analysis estimates
(1.3). In this subsection, we present theoretical calculations to the effect that this will not be a prob-
lem in equal-allocation studies (p = E(ξi j) = 1/2) with properly specified models (γ = ρi = 0) in the
absence of censoring.

The special feature of the linear models studied here is that we are interested in the coeffi-
cient of a single predictor ξi j which by design is independent of all others. Our primary tool in
analyzing bias is the asymptotic expansion via Taylor series of the log-likelihood to higher order
than is done in standard ML theory. This has been done rigorously in a one-dimensional param-
eter setting by Pfanzagl (1973a), with some further regularity conditions and relevant results (but
not a convenient formula) in Pfanzagl (1973b). The necessary extensions for multivariate parame-
ters are sketched below. The appropriate regularity conditions require smoothness to third and fourth
order of the density fe of the errors εi j, with boundedness on compact sets of expressions like
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∫
supt:|t|≤K |(dk/dtk) log fe(t)| fe(t)dt for finite K and 1≤ k≤ 4. In addition, a fully rigorous justifi-

cation requires assumptions on the predictors (Xi j, Zi j) so that empirical averages of certain functions
of them over i, j satisfy laws of large numbers.

The idea of the asymptotic expansion for bias of maximum likelihood estimators in a multivariate
setting is as follows. Denote iid data-vectors by W j for j = 1, . . . ,n, with r-dimensional parameter
η, and log-likelihood LLk(η) = ∑n

j=1 log f (W j,η). Under the assumption that the MLE η̂ is
consistent for the true value η0 in the interior of its parameter space, Taylor expansion of ∇LLk(η̂)
around η0 yields

−∇⊗2LLk(η0)(η̂−η0) ≈ ∇LLk(η0) +
1
2

(
(η̂−η0)′

∂
∂ηk

∇⊗2 LLk(η0)(η̂−η0)
)r

k=1

up to a remainder of order oP(1) as n gets large. Here and throughout the paper, we use the notation
∇⊗2 to denote the Hessian matrix-valued operator of mixed partial derivatives, and for any vector v,
the notation v⊗2 ≡ vv′. Substitute

U = ∇LLk(η0) , I = n−1 E(−∇⊗2LLk(η0)) , R = ∇⊗2LLk(η0)+nI

into this expansion, along with η̂−η0 = (nI)−1U +oP(n−1/2), to find

η̂−η0 = (nI)−1U + (nI)−1 R(nI)−1U

+
1
2

(
(nI)−1U ′(nI)−1∇⊗2 ∂

∂ηk
LLk(η0)(nI)−1U

)r

k=1
+ oP(n−1)

Since E(U) = 0, the quantity η̂−η0 differs by oP(n−1) from a random variable with expectation

n−1Eη0

{
I−1 ∇⊗2 log f (W,η0) I−1∇ log f (W,η0) (2.3)

+
1
2

I−1
(
(∇ log f (W,η0))′ I−1 E

[ ∂
∂ηk

∇⊗2 log f (W∗,η0)
]

I−1 ∇ log f (W,η0)
)r

k=1

}

where W∗, W are independent and identically distributed.
We now apply the formula for bias to the ϑ component of the MLE based on the model (1.3) for a

single study. For simplicity, in this subsection let ξi j take values q,−p with respective probabilities
p,q, where 0 < p < 1 and q = 1− p. (The mechanism of treatment allocation is known to the statis-
tician, and usually p = 1/2.) Also for simplicity, let the unknown parameter be η = (ϑ, β, µ, σ2), a
vector of dimension r = d +3. Then the parameter of main interest, the treatment effect ϑ, has the
secondary notation η1. The density of εi j has been assumed known up to the scale parameter, so
without loss of generality let εi j be centered and scaled so that it has mean 0 and scale-parameter
σ, i.e., let the density be σ−1 g(s/σ), where g a known density with mean 0 (or else median 0).
Denote

ig ≡
∫ (g′(s))2

g(s)
ds , ag =

∫
s2 (g′(s))2

g(s)
ds − 1 , mg =

∫
s
(g′(s))2

g(s)
ds (2.4)

where the ag integral is assumed finite, so that the others are also finite.
For the rest of this subsection, we suppress the study-center index i, denote W j = (Yj, X j, ξ j)

and ε j = Yj−µ−ϑ j ξ j−X ′
jβ, and assume that the vectors Xi j = X j are random and iid with mean

0, with E(X⊗2
j ) ≡ ΣX . Then the density f (·,η) for W is σ−1 fe(ε j/σ, η), and it is straightforward

to check that
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∇ log f (W,η) =
1
σ

{
− g′(ε/σ)

g(ε/σ)




ξ
X
1

ε/σ


 −




0
0
0
1




}
, I =

1
σ2

(
pqig 0′

0 B

)

where I is r× r, r = d +3, and the (d +2)× (d +2) matrix B is given by

B =

(
ΣX 0 0
0′ ig mg
0′ mg ag

)

Now we successively evaluate the first component for the two expectation terms in curly brackets in
(2.3). Because of the block-diagonal form of I given above,

E
(

I−1 ∇⊗2 log f (W,η0) I−1∇ log f (W,η0)
)

1

=
σ2

pqig
E

(
(

∂
∂η1

∇ log f (W,η0))′I−1 ∇ log f (W,η0)
)

Substituting the form found above for ∇ log f (W,η) along with its partial derivative with respect to
ϑ, we find the last expression equal to

E
{ −ξ

σpqig

(
(logg)′′(

ε
σ

)




ξ
X
1

ε/σ



′

+
g′(ε/σ)
g(ε/σ)




0
0
0
1



′)

I−1
(g′(ε/σ)

g(ε/σ)




ξ
X
1

ε/σ


 +




0
0
0
1




)}
.

Finally, using the block-diagonal form of I to eliminate the terms involving ξ2, and recalling that ξ
has mean 0 and is independent of (X ,W) to eliminate the terms linear in ξ, we conclude

E
(

I−1 ∇⊗2 log f (W,η0) I−1∇ log f (W,η0)
)

1
=
−σE(ξ3)
(pqig)2

∫ {g′′(s)
g(s)

− g′(s)2

g2(s)

}
g′(s)ds .

where we have also made the change of variable s = ε/σ in the integrals over the density σ−1 g(ε/σ)
for ε. Similarly, the first component of the second term in (2.3) is calculated as

E
(

I−1
(
(∇ log f (W,η0))′ I−1 E

[ ∂
∂ηk

∇⊗2 log f (W∗,η0)
]

I−1 ∇ log f (W,η0)
)r

k=1

)
1

=
σ2

pqig
E

(
(∇ log f (W,η0))′ I−1 E

[ ∂
∂η1

∇⊗2 log f (W∗,η0)
]

I−1 ∇ log f (W,η0)
)

. (2.5)

This expression is reduced further, again by means of the block-diagonal form of I together with the
independence of ξ from (X , ε), resulting in

I−1 E
[ ∂

∂η1
∇⊗2 log f (W∗,η0)

]
I−1 =

−E(ξ3)
σ3

∫
(logg)′′′(s)g(s)ds




1
0
0
0



⊗2 ( σ2

pqig

)2
.

Then expression (2.5) reduces to −σE(ξ3)(
∫

(logg)′′′(s)g(s)ds)/(pqig)2, so overall the asymptotic
bias for ϑ̂−ϑ0 given in expression (2.3) has been shown equal to

Order
1
n

Bias of ϑ̂ =
−σE(ξ3)
n(pqig)2

∫ ({g′′(s)
g(s)

− g′2(s)
g2(s)

}
g′(s) +

1
2

(logg)′′′(s)g(s)
)

ds . (2.6)
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Two applications of this result deserve special mention. First, in the case of normal errors (g(s) =
(2π)−1/2 e−s2/2), the order 1/n bias is exactly 0. Second, in the case of extreme-value errors (g(s) =
exp(s− c− es−c), with c =−0.5772 defined so that g has expectation 0), ig = 1 and the order 1/n
bias is−E(ξ3)σ/(2n(pq)2) = (p−q)σ/(2npq). For all g, the top-order bias is 0 when p = q = 1/2,
which will be the case in most randomized clinical trials. Simulation examples related to the biases
studied in this subsection will be given below, in a case with p = 1/3 such as might arise in practice
in a case-control study with two controls matched to each case.

Although no further details are provided here, the same result (2.6) can be proved to hold also
when there are treatment-by-covariate interactions with coefficients γ allowed in the model (1.2). The
impact of this result, either as given above or in this extended form, is that balanced (p = 1/2) linear
center-level models contribute biases of order no higher than 1/n2

i in the meta-analysis model (1.3)
whenever the models (1.2), or even the extended versions with a treatment-by-covariate interaction
term, are properly specified. For this reason, we must look to the possibility of omitted treatment-by-
covariate-by-center interactions to understand whether there might actually be meta-analysis biases
in the linear-model context. If so, one might expect the interactions and therefore the biases to lie in
the same direction for multiple centers.

3 Inconsistency

Since individual studies for which results are combined through meta-analysis are often small, they
generally ignore interaction terms between treatment and covariates. This might happen because the
relevant covariates enter only weakly into the predictive linear model (1.2) for survival in each center,
and the covariate Zi j itself is omitted from the fitted model. But even if Zi j enters (1.2) among the
predictor variables Xi j, the interaction term — the one with coefficient γi ≡ γ + ρi in (1.1) — will
usually not be strong enough to warrant inclusion in the center-level model. Yet the treatment-by-
covariate interaction coefficients with fixed and random-effect coefficients γi could easily be strong
enough for inclusion in the unified analysis (1.1). That is, the pooled-data model might well estimate
coefficients γi not quite detectable in the models (1.2).

This phenomenon was seen to occur in the combined model-fitting of Gray (1994) in the multi-
center clinical trial ECOG EST 1582 of two different chemotherapy regimens for treatment of small-
cell lung cancer. Among the covariates were an indicator (‘bone’) of bone metastases, one of liver
metastases, and one of weight-loss prior to study entry, as well as a measure of performance status at
baseline. Gray (1994) found by a Bayesian proportional-hazards analysis that treatment differences
were significant but that treatment-by-bone interactions were also. A re-analysis by DeMissie
(2009) showed the same phenomenon by parametric Weibull survival regressions taking into account
center-level random intercepts (terms ui in (1.1)) and random treatment effects (terms vi), finding
slightly significant (random-effect) treatment by center and (fixed-effect) treatment by bone in-
teractions.

In the clinical trial example of the previous paragraph, DeMissie (2009) determined that meta-
analysis would have recovered essentially the same significant treatment effect (and p-value) found
earlier by Gray (1994) and in his own analysis of model (1.1). However, had the treatment effect
been weaker and the treatment by bone effect considerably stronger, meta-analysis could have
resulted in a meaningful bias in estimated treatment effect, a bias which we now explore.
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3.1 Limiting-ML bias via Kullback-Leibler minimization

Our method is to calculate numerically the closest model (1.2) in Kullback-Leibler sense to a specific
center-level model (the ‘true model’) which includes an extra treatment-by-covariate term γi ξi j Zi j. In
such a ‘true model’, for a single center i, the treatment-effect felt by individual j is ϑi + γi Zi j. Recall
that the Kullback-Leibler distance between a working model with density h and a true model with
density f is K(h, f ) ≡ ∫

log( f/h) f , and that under fairly general regularity conditions (cf. van der
Vaart 1998, pp. 44–47), the ML estimates for the parameters of a working parametric model-family
h ∈ H converge in large data-samples to the parameter values defining the element h∗ which mini-
mizes K(h, f ) over h ∈H . In this Section, the working model is (1.2) in center i (with parameters
(µi, ϑi, β(i), σi)), versus a true model in which

Yi j = mi + ti ξi j + X ′
i j bi + γi ξi j Zi j + ε̃i j (3.1)

with parameters (mi, ti, bi, γi, τi), where ε̃i j is assumed to fall in the same centered scale family as
εi j but has scale-parameter τi instead of σi.

To understand the large-sample biases in treatment effect induced by misspecifying the true model
(3.1) as (1.2), we begin calculating the difference between the large-sample limit of the working-ML-
estimated treatment-effect parameter ϑ∗i and ti in a single center-group i, when Zi consists only
of a single column which appears also as a column Xi j. In this case, all of the bias ϑ∗i− ti can be
shown to depend on the true model parameters only through γi together with σi, in such a way that
(ϑ∗i− ti)/σi is a well-defined function of γi/σi. To see this, note that in the integrals

−
1

∑
ξ=0

pξ (1− p)1−ξ
∫ ∫

log(h(y,X ,ξ)) f (y|X ,ξ)dy fX(X)dX (3.2)

being minimized, h(y,X ,ξ) = h(y|X ,ξ) fX(x) pξ (1− p)1−ξ (with p known), and

f (y|X ,ξ) =
1
τi

g((y−mi− tiξ−b′iX− γiξZ)/τi) , h(y|X ,ξ) =
1
σi

g((y−µi−ϑiξ−β′iX)/σi).

The change of variable s = (y−mi− tiξ−b′iX − γiξZ)/τi in (3.2), which then can be minimized
over (µi−mi)/σi, (ϑi− ti)/σi, (βi−bi)/σi, and τi/σi, shows that the minimizing standarized bias
(ϑi− ti)/σi depends on the parameters of model (3.1) only through γi/σi and p.

We gain numerical insight into the dependence of the KL-minimizing standardized bias
(ϑi− ti)/σi, in a single study i for (3.1) misspecified as (1.2), as a function a(γi/σi), through a series
of numerical calculations in terms of the Extreme-Value density g, for several choices of 50× 2
matrices X, with first column a fixed vector of N (0,1) deviates (the same vector throughut), and
second column defined equal to Z, such that 1′X = (0,0). For each choice of a column Z, simu-
lated in each case from a specified distribution and then standardized as a vector of 50 components to
have sample mean 0 and standard deviation 1, we display the KL-minimized biases by graphing the
calculated pairs (γi/σi, (ϑi− ti)/σi). With the first column of X fixed once and for all, we obtain a
function a(γi/σi, p) to graph for each choice of a distribution from which to simulate the column Z
(the second column of X) as an iid sample of size 50, after which Z is standardized.

The results are displayed in Figures 1 and 2, respectively for the two cases p = 0.333 and 0.5, for
Z columns generated either as samples of size 50 from Beta(3,1), Beta(1,3), Beta(2,2), Beta(.2, .2),
or as {0,1} sequences of length 50 respectively containing 25, 20 ,15, or 10 ones. The calculations
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generally show that the biases are larger when the distribution of Z column entries is more asymmetric,
or when p is farther from 1/2. For large values of γi/σi, the biases are nearly proportional to γi/σi,
but when Z consists of equally many 1’s and 0’s, and also p = 0.5, the biases are exactly 0. In other
cases where p = 0.5, the biases may be negative; but the magnitudes of biases are generally much
smaller for p = 0.5 than for p = .333.
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Fig. 1 Limiting large-sample ML biases as a function of interaction effect γi, when σi is set to 1, with p=0.333. Error
density is centered (mean-0) extreme-value.

The results presented in these Figures, and additional calculations which are not shown, make it
clear that the biases due to omitted treatment by covariate interactions cannot in general be ignored.
There are certainly applied settings where biases in treatment-effect divided by the standard devi-
ation σi as large as those seen in these Kullback-Leibler minimizations could seriously affect the
interpretation of a meta-analysis. On the other hand, even if the error distribution is extreme-value,
and especially in meta-analyses of studies with balanced allocation, the interaction-effects needed
to attain biases of magnitude .03 or larger are .7 or larger for the various Z-columns that have been
tried. In realistic meta-analyses, treatment-by-covariate interactions may often not be nearly that large.
Moreover, with Gaussian error distributions, these misspecified ML biases can be shown to disappear
completely (for model (3.1) misspecified as (1.2)), for all values p. Thus, in many meta-analyses with
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nearly equal allocation, the biases studied here, in Sections 2.3 and 3, will be extremely small. We
illustrate using data from the lung-cancer clinical trial mentioned in the Introduction.
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Fig. 2 Limiting large-sample ML biases as a function of interaction effect γi, when σi is set to 1, with p=0.5. Error density
is centered (mean-0) extreme-value.

3.2 Numerical results based on real multi-center covariate data

We continue by applying the method of the previous subsection to assess the potential biases using
the 570×4 design (covariate) matrix (Xi j, 1≤ i≤ 18, 1≤ j ≤ ni) of four non-constant predictors
bone, liver, weight, and Perf as in DeMissie (2009), which differed from the raw ECOG
EST 1582 data only in that the original 26 centers were pooled in DeMissie (by a criterion involving
similarity of the four covariates) into 18 clusters with minimum sample size > 15. DeMissie (2009)
fitted a model of the form (3.1), without random effects for cluster or cluster-by-treatment, to the data
Yi j consisting of the log survival times in this multi-center lung cancer clinical trial, with error-term
variables ε̃i j chosen to be extreme-value (log’s of exponential) random variables corrected to have
mean 0. He used Z =bone and ξi j = ±.5, fitting a model (3.1) with parameters taken to be the
same for all i, in the same spirit as Gray (1994). The parameters obtained by fitting the model in this
way were:
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m0 = .033, b0 = (−.18,−.23, .42,−.18), t0 = .20, γ0 = 0.22, τ0 = .8 .

This was an equal-allocation clinical trial, with the proportion of ξi j indicators equal to 1 very close
to 1/2 within each center i. So after correcting the entries of Xi j to have mean 0 when averaged
over j = 1, . . . ,ni for each fixed i, and re-expressing the model parameters in (3.1), we obtained model
parameters which did vary with i.

We applied the calculations of Section 3 to the model just described, for each i. The result was that,
with γi ≡ 0.22, p = 0.5, the bias of the Kullback-Leibler minimizer of the misspecified model (1.2)
parameters with respect to the true model with parameters just decribed was at most about 0.0001
in each cluster, and the biases increased only to a maximum of about 0.001 when γi was increased
to 0.44. When this calculation was re-done with γi = 0.44, p = 0.333, the largest cluster-level
biases found in ϑi are of the order .01. Thus the parameter combinations including the actual fitted
interaction effect γ would not have led to meaningful misspecified-model biases even if the treatment
allocation fraction differed from 0.5, although the biases were not 0. (When γ = .88 and p = .4, the
largest biases range up to .026, around 8% of the corresponding cluster ϑi values.)

This calculation confirms that the potential biases in treatment-effect estimates when study-level
treatment by covariate interactions are erroneously omitted may still in real linear-model exam-
ples (3.1) turn out to be negligibly small. Whether they do is a quantitative question relating to
the magnitudes of covariate values, coefficients, and treatment-by-covariate interactions. Note that
the Kullback-Leibler minimization calculations presented here relate only to linear models: and it
remains to be seen whether omitted treatment by covariate interactions in nonlinear or generalized-
linear models more easily result in important biases with realistic covariate design matrices.

4 Simulation evidence

In this section, we examine the biases which arise in center-level analyses using model (1.2) in a
simulation of a patient-level clinical trial with several different treatment scenarios. We simulated the
true model (3.1) with the same fixed covariate design matrix from the ECOG EST 1582 trial, as in
the previous subsection, with the same parameter settings and cluster structure (570 patients in 18
hospital ‘centers’, some of which were combined from smaller centers).

We consider the biases in center-level estimates ϑ̂i under model (1.2) with design matrix of
covariates Xi j not corrected to have center average 0, and with errors following the adjusted extreme-
value density g(w) = exp((w−c−ew−c)/σe) where c =−0.5772 is defined so that g has expectation
0. Our simulations are intended to compare biases with equal random treatment allocation (p = .5)
versus those with random allocation of two control patients to each patient receiving the experimental
treatment (p = 1/3). The treatment variable in either case has the form as in Section 1.2 that ξi =
ξo

i − p where ξo
i ∼ Binom(1, p), and we consider separately the case where the treatment-allocation

indicators are fixed for an entire simulation or are re-simulated in each replication of the trial.
The first set of simulations, each of 1000 replications of 570 patients’ log survival times Yi j, is

summarized in columns 4–6 of Table 1. For these simulations, there is no variable Zi j (i.e., γ = σρ =
0). The parameters in model (1.1) — apart from the treated fraction p which is taken either equal to
1/2 or 1/3 — are fixed at

µ = .033, ϑ = 0, β = (−.18,−.23, .42,−.18), σu = .5, σv = .44, σe = 0.8 .

In the first simulation (with empirical biases given in column 4), p = 1/2, and in the second and third
(col.’s 5 and 6), p = 1/3. In the first and second, treatment allocation was simulated only once for each
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of the first and second blocks of 500 replications, for all 570 patients, while in the third simulation,
treatment allocations were generated independently in each of the 1000 simulation replications. The
averaged results of the center-level treatment-effect estimators ϑ̂i, 1 ≤ i ≤ 18, are displayed for
all three simulations in Table 1. The displayed averages in columns 4–6 are biases, since the true
ϑ = 0. The average standard errors for these estimators (not shown), were all approximately 0.02.
Finally, col. 7 contains the expected top-order bias (the expectation of column 6) found in Sec. 3 to
be 2(p− q)σe/(ni pq) which for p = 1/3 and σe = 0.8 is equal to − 0.6/ni, where ni is the
center sample size displayed in column 2. Inspection of the Table shows that there is almost no bias
in the ϑ̂i estimates when p = 1/2. Those few cases (especially centers 7 and 14) which have average
estimated biases too large to be due to chance indicate particularities of the fixed treatment-allocations
simulated only once for the first and last 500 replications, and are not incompatible with expected bias
of 0 when averaged over random ξi. Similar comments, about the different biases seen in column 5
versus 6 due to the treatment-allocation variates ξi fixed over blocks of 500 replications in col. 5
versus ξi re-simulated in each replication for col. 6. The theoretical expected top-order biases (col. 7)
do correlate highly with but are not very close to the empirical numbers in column 6 for p = 1/3. This
is not fully explained, although the moderate sample sizes mean that great reliance cannot be placed
on asymptotic results.

Table 1 Biases of center treatment effects ϑi. Col.’s 4–6: biases in 3 simulations of 1000 replications each with γi = 0;
col. 8 biases from simulation with γi = .22. Col. 7 is the theoretical top-order expectation of Col. 7 from Sec. 3. Parameter
settings and structural details given in text.

γ = 0 γ = .22
Center info trt fixed trt random Theor. trt fixed

Ctr Size Bonefrac p = 0.5 p = 1/3 p = 1/3 Bias(1/3) p = 0.5
1 21 .095 .0227 -.0445 -.0308 -.0286 -.004
2 17 .000 .0054 -.0002 -.0529 -.0353 .029
3 18 .444 .0213 -.0635 -.0229 -.0333 .002
4 27 .296 .0055 -.0567 -.0411 -.0222 .003
5 46 .283 -.0287 .0012 -.0017 -.0130 -.018
6 31 .355 .0000 -.0459 .0022 -.0194 -.010
7 17 .118 .0579 -.0308 -.0464 -.0353 -.037
8 59 .339 -.0034 -.0126 -.0158 -.0102 -.013
9 56 .268 .0056 -.0281 .0058 -.0107 -.011

10 31 .290 -.0181 -.0217 -.0155 -.0194 -.014
11 22 .273 .0150 -.0477 -.0354 -.0273 -.011
12 39 .282 -.0020 -.0048 -.0063 -.0154 -.001
13 27 .333 -.0115 -.0760 -.0198 -.0222 -.013
14 53 .585 .0120 -.0083 -.0304 -.0113 .006
15 17 .176 .0275 -.0256 -.0659 -.0353 .047
16 42 .238 .0435 .0067 -.0031 -.0143 -.012
17 23 .391 .0063 -.0330 -.0093 -.0261 .016
18 24 .417 -.0150 -.0521 -.0100 -.0250 -.012

A further batch of 1000 simulation-replications was done, with p = 0.5 and all covariates and pa-
rameters fixed as in the previous simulations (including σρ = 0 in (1.1)) except that now ϑi = .22 and
the Zi j column (the bone covariate) enters in (3.1) through the treatment-by-covariate interaction-
term with nonzero coefficient γi = 0.22 (for all i). Recalling that Xi j and Zi j used in these simulations
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were not adjusted to have average 0 within each center, we find that the actual treatment effects ϑi

experienced under model (3.1) in centers i was actually 0.22 + b′ ∑ni
j=1 Zi j /ni.

Averaging the estimates ϑ̂i calculated under the misspecified model (1.2) across simulations, and
subtracting these true treatment effects, yields the biases recorded in the 8’th column of Table 1).
These biases are almost all remarkably small, according closely with the findings of Demissie (2009).
Although the specific biases found in this simulation cannot be viewed as an expectation over random
ξi j, since only two treatment-allocations were simulated for blocks of 500 simulation replications,
these small biases are as anticipated from the findings in Section 3.2.

In both sets of simulations, care was needed to avoid nonconvergent ML estimates because of the
smallness of most center sample-sizes. Occasional large estimates were re-checked with alternative
initial values suppled to the R function survreg. All computations in the paper were done in the R
(2009) statistical computing package.

5 Conclusions

After a brief review of previous work, this paper has studied two ways for biases to enter into meta-
analyses of multi-center studies under linear models with additive random errors and random effects.
The first, arising from O(1/ni) biases of ML estimators, causes bias only in models with non-
Gaussian errors and unequal treatment allocations, but theoretical calculations and simulations (given
in Table 1) show that meaningfully large biases can enter with realistic Weibull regression models
due to small center sample sizes when the experimental-treatment fraction is 1/3. The second mech-
anism of bias studied is due to misspecified models, which can arise because small separate studies
will generally ignore moderate treatment-by-covariate interactions. Theoretical and simulation evi-
dence in this paper shows that this source of bias will be uncommon, and the resulting biases will be
small in linear models unless the omitted interaction effects are large. Future research should aim to
extend to nonlinear and generalized-linear and censored-data studies this exploration of potential bi-
ases from small-sample ML estimates and from misspecification by omitting treatment-by-covariate
interactions.
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