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ABSTRACT
In many settings, multiple data collections and analyses on the same topic are summarised sep-
arately through statistical estimators of parameters and variances, and yet there are scientific
reasons for sharing some statistical parameters across these different studies. This paper sum-
marises what is known from large-sample theory about when estimators of a common structural
parameter from several independent samples can be combined functionally, ormore specifically
linearly, to obtain an asymptotically efficient estimator from the combined sample. Themain idea
is that such combination can be done when the separate-sample nuisance parameters, if any
exist, vary freely and independently of one another. The issues are illustrated using data from a
multi-centre lung cancer clinical trial. Examples are presented to show that separate estimators
cannot always be combined in this way, and that the functionally combined separate estima-
tors may have low or 0 efficiency compared to the unified analysis that could be performed by
pooling the datasets.
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1. Introduction

In many fields of social and biomedical science, mul-
tiple studies estimating the same parameter are con-
ducted and summarised separately. The parameter of
interest is often a measure of effectiveness, that is, of
difference in response between groups with and with-
out a certain treatment. Effectiveness may be quantified
by the positive effect of a biomedical treatment or of
an intervention in a social-science context such as edu-
cation or criminal justice. The most common version
of the problem, addressed by Meta-Analysis (Hartung,
Knapp, & Sinha, 2008), arises when many independent
and uncoordinated studies are not individually large
enough to make a definitive statement about positivity
of the single (usually scalar) parameter θ which has sci-
entific or policy interest. Another setting in which anal-
yses are combined is the less common one of large sim-
ilar studies (say, done in different geographic regions)
with a shared parameter, where there may or may not
be shared nuisance parameters.Whether large or small,
few ormany, the separate studiesmight differ in the pre-
cise characteristics of the population investigated, the
criteria of inclusion in each study, or in the measure-
ments collected either because of the choice of auxiliary
variables or because of the definitions and research
methods used.

The primary objective here, as in the numerous
examples of meta-analysis in Hartung et al. (2008),
is to combine the results of many moderate-sample
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studies to distill a consensus parameter estimate, or a
corresponding test of significance of specific compo-
nent parameter(s) representing treatment effectiveness.
Since it is not always possible to gain simultaneous
access to the raw unit-level data of previously published
studies, researchers seeking a definitive test or estima-
tor of treatment effectiveness often attempt to combine
the study results through a function of their separate
summary statistics rather than through a re-analysis of
all pooled study subject-level data based on a unified
model.

The active field of statistical meta-analysis is occu-
pied with methods of simultaneously modelling dis-
parate studies or the estimated parameters from those
studies in such a way that they can be combined (Har-
tung et al., 2008). Much of this effort has gone into
models that account for differences in study methodol-
ogy through random effects. Random-effect, empirical-
Bayes, and hierarchical Bayes methods have all proved
useful in this effort to combine study results. Efforts
to ‘borrow strength’ across distinct experimental enti-
ties are ubiquitous in the random-effect and Bayes
community (Carlin & Louis, 2008; Efron, 1996), but
arise also under the heading of Small Area Estima-
tion in the survey world (Rao & Molina, 2015). The
validity of analyses depending on models to combine
different experiments with shared parameters and ran-
dom effects can always be questioned, but sometimes
such analyses turn out to be surprisingly robust (Slud

© East China Normal University 2018

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2018.1530903&domain=pdf
mailto:evs@math.umd.edu
https://doi.org/10.1080/24754269.2018.1530903


2 E. SLUD ET AL.

& DeMissie, 2011). We discuss and illustrate some of
the relevant modelling issues in Section 2 below.

This paper studies the problem of combining studies
using a frequentist large-sample approach based on the
standard tools of Fisher information and large-sample
asymptotics. We begin by giving notations, statements
and explanations of relevant results.

Suppose that k large independent samples Xj =
{xij}nji=1 of independent vectors of data xij ∼ fj(·,β , λj)
are observed, for j = 1, . . . , k, with the goal of esti-
mating the common parameter β ∈ U ⊂ R

p efficiently.
The densities fj of individual data-vectors xij are
assumed known except for the parameters (β , λj) ∈
U × �j ⊂ R

p+qj , where the nuisance parameters λj
may not be present for all j, but k and the parameter
dimensions p, {qj}kj=1 are fixed while the sample-sizes
nj all tend to ∞. Assume that the separate samples Xj
are summarised only through estimators β̃j of β , along
with estimators Ṽj/nj of their variances, and that it
is desired to estimate β as efficiently as possible from
these statistics. The vectors β̃j might then be treated as
independent data with approximate means β and with
known variance matrices Ṽj/nj. We refer to (β̃j, Ṽj) as
separate-sample estimators and to estimators within a
unifiedmodel of the k-sample data considered together
as combined-sample estimators.

When β is scalar, the best unbiased linear-combi-
nation estimator β̂ = ∑k

j=1 wj β̃j with respect to mean-
squared error is well known to have wj = (nj/Ṽj)/∑k

l=1(nl/Ṽl). This estimator β̂ has often been viewed
in Meta-Analysis (Hartung et al., 2008, Chapter 4) as
arising from the model

β̃j = β + ej, ej
indep.∼ N (0,�j), �j = Ṽj/nj (1)

where the variances �j are treated as known. This
model is treated as the source of the meta-analytic
estimator (3) below also in the p-vector setting.

Olkin and Sampson (1998) considered a balanced
ANOVA model

xij = μj(1, . . . , 1)tr + (b1, . . . , , bp−1, 0)tr + εij (2)

which fits into our setting, where β = (b1, . . . ,
bp−1, 0)tr, the components εaij of the p-vectors εij are
uncorrelated and all have mean 0 and (known or
unknown) variance σ 2, and β̃j = x̄·j − x̄p·j (1, . . . , 1)tr

are the least-squares estimators of the β vectors in
terms of the jth-sample data {xij}nji=1. Olkin and Samp-
son (1998) prove – in a setting extending (2) to unbal-
ancedANOVA– that the best linear estimator (3) below
in model (1) is identical to the least squares estimator
of β within the combined unit-level model (2). When
the errors εaij are normal, the Gauss-Markov Theorem
implies that the linear-combination estimator (3) is
MaximumLikelihood and therefore efficientwithin (2).

Two recent articles, Lin and Zeng (2010) and Liu,
Liu, and Xie (2015), have treated in different ways the
problem of efficiently combining separate-study esti-
mators of a shared parameter when there are nuisance
parameters. Lin and Zeng (2010) discusses the para-
metric combination of separate-study estimators when
only the separate-study estimators β̃j and variance esti-
mators Ṽj are available. They prove the result given
as (V) below, in the case where the same parameter
β is estimated by maximum likelihood in each study
and all nuisance parameters vary freely and uncon-
strained between studies. They do not cover the case
where nuisance parameters are infinite-dimensional or
where the separate studies may estimate only projec-
tions of β , a situation that occurs naturally in meta-
analysis, as illustrated in the example of Section 2 below.
These extensions are covered in the present paper, in
Section 3 and Appendices 1 and 3. The second issue,
that separate studies may estimate only functions of a
common parameter, is treated fully by Liu et al. (2015)
in a more general setting where nuisance parameters
may constrain each other across studies. The paper of
Liu et al. (2015), using the idea of Confidence distri-
butions, establishes under general regularity conditions
the form of the optimal combination of the separate-
study estimators of all of the parameters, not just the
shared structural parameters but the nuisance parame-
ters too. That paper is therefore less directly relevant to
meta-analysis in practice, since it is very uncommon for
investigators in separate studies to report the estimated
nuisance parameters as well as joint variance estimates
of all structural and nuisance parameters, as was noted
by Lin and Zeng (2010, 1st paragraph of Section 2.2).

In the rest of this paper, we allow the possibility
that in the jth sample, the estimand may be not the
full p-vector parameter β but rather a projection 	jβ

to a known subspace of the p-dimensional parame-
ter space, with ‘structural zeroes’ in place of the other
coordinates (I − 	j)β . In case the range of the projec-
tion 	j has dimension < p, the jth sample estimator
β̃j is assumed to be either an efficient estimator or one
derived by solving an estimating equation of 	jβ , with
asymptotic variance Vj(β)/nj, where Vj(β) is consis-
tently estimated by Ṽj. Both Vj(β) and Ṽj are assumed
to have range-spaces the same as that of 	j, and
respective generalised-inverses Vj(β)−, Ṽ−

j which are
inverses of Vj(β), Ṽj on range(	j) and are the 0 oper-
ator on the orthogonal-complement space range(I −
	j). Appendix 1 proves under general large-sample reg-
ularity conditions, that if β̃j are asymptotically efficient
estimators of 	jβ from the separate samples, then the
overall p-vector estimator

β̂ =
[ k∑

j=1
nj Ṽ−

j

]−1 k∑
j=1

nj Ṽ−
j β̃j (3)
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is an efficient estimator of β from the combined sample
X ≡ {xij : 1 ≤ i ≤ nj, 1 ≤ j ≤ k}, i.e., has minimal
asymptotic variance, if there exists a regular effi-
cient estimator depending (smoothly) on (β̃j, Ṽj : j =
1, . . . , k) alone. Alternatively, this efficiency is proved to
hold in Section 3 under the restriction that the nuisance
parameters λj range freely without any constraints con-
necting them for different j. In a further reformulation
in Section 3, it is shown that when the nuisance param-
eters λj range freely without any constraints connecting
them for different j, and the estimators β̃j are obtained
by solving M-estimating equations

nj∑
i=1


j(xij,β , λj) = 0,


j(x,β , λj) = ∇β ,λjM(x,β , λj) (4)

the estimator β̂ is efficient in the sense of having
the same asymptotic variance as the best estimating-
equation estimator linearly combining the estimating
functions
j(x,β , λj)withmatrix coefficients. Through
examples in Section 4, we show that when the param-
eters λj are related by constraints, the estimator (3)
is generally not efficient and may have efficiency 0,
which means intuitively that its large-sample variance
has larger order of magnitude than the best possible
estimator based on the combined sample.

Before going on to theoretical developments, we
illustrate these ideas in the next section using data from
a real clinical trial.

2. Data example from amulti-centre clinical
trial

Large randomised clinical trials are often conducted
simultaneously at different medical centres. They are
generally governed by the same clinical protocols —
including formal entry criteria, randomisation meth-
ods, baseline and cross-sectional measurements to be
collected, and study endpoints—but can differ inmany
of the same ways as completely separate studies: the
patient populations from which study participants are
recruited, slight differences in theway entry criteria and
medical procedures are applied by medical personnel
at the different centres, and the patient management
strategies of individual physicians associated with the
different centres. However, since the study design is
shared by all the centres, such large clinical trials can
be excellent test-beds for methods purporting to esti-
mate shared parameters by combining analyses done
in separate smaller studies. We describe the separate
and combined analyses for just such a study, the East-
ern Cooperative Oncology Group (ECOG) EST 1582
clinical trial of two different combination chemothera-
pies for treatment of small cell lung cancer, which has
previously been analysed by Gray (1994) and studied

by meta-analysis in Slud and DeMissie (2011). The
standard therapy in this trial was CAV, a combina-
tion of cyclophosphamide, adriamycin and vincristine,
and the experimental treatment regimen (CAV-HEM)
alternated cycles of CAV with hexamethylmelamine,
etoposide and methotrexate. Allocation to these two
treatment arms was randomised and equal.

The covariates in the study were binary indi-
cators: Trt for experimental treatment, bone for
bone metastasis, liver for liver metastasis, wtloss
for weight-loss prior to study entry, and a mea-
sure Perf of performance status at baseline. These
covariates entered significantly into an overall Bayesian
proportional-hazards analysis by Gray (1994), who
found that both a coefficient for Trt and one for an
interaction term Trt-by-bone were significant. Here,
as in Slud and DeMissie (2011), building on the ear-
lier MS thesis work of DeMissie (2009), we analyse
the same data separately by centre taking the Trt-by-
bone interaction into account.

The data for subject i in study-centre j consist of Yij
equal to the logarithmof survival timeTij (or log of time
until censoring, for the 10 out of 570 patients who were
lost to follow-up at a time before death), �ij indicating
Yij as a failure time rather than censoring, and zij the
vector of covariates consisting of the constant 1, Trt,
bone, liver, Perf, wtloss in Model 1, aug-
mented in Model 2 by Trt*bonCtr, where bonCtr
is a recoded covariate obtained by subtracting from
bone its study-centre mean. The main Trt effect in
Model 2 is still the Trt coefficient due to the centering
inbonCtr. The 18 study-centre clusters were obtained
from the 26 original hospitals, as in DeMissie (2009),
after merging some smaller ones by clustering for sim-
ilarity of covariate means, so that the smallest number
of individuals in any centre became 17. The underlying
models we consider here are

logTij =
p∑

r=1
zij,r br + σ eij (5a)

or

logTij =
p∑

r=1
zij,r br + uj + σ eij (5b)

where zij are as defined above, uj ∼ N (0, σ 2
u ) are

independent random cluster-effects included only in
model (5b), and eij are independent random errors dis-
tributed as extreme-value, i.e., as the logarithm of a unit
exponential variable. These models are called Model 1
(a or b) when the parameter β common to all study-
centres is the scalar coefficient of Trt. Model 2 (a or
b) differs only by including the Trt*bonCtr covari-
ate, with β the 2-vector of coefficients of Trt and
Trt*bonCtr.

Models 1a and 2a are first fitted for each study-
centre, and their separately estimated β coefficients
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Table 1. Estimated parameters and SE’s from two models, with
coefficients β1 for Trt and β2 for Trt*bonCtr, in separate
study centres. ‘*’ denotes structural 0.

Model 1 Model 2

j nj β̃j Ṽ1/2j β̃j,1 Ṽ1/2j,11 β̃j,2 Ṽ1/2j,22

1 21 0.307 0.166 0.383 0.154 1.083 0.420
2 17 0.266 0.205 0.266 0.205 * *
3 18 0.682 0.205 0.687 0.207 −0.187 0.427
4 27 0.400 0.343 0.406 0.340 0.243 0.840
5 46 −0.159 0.183 −0.147 0.177 0.367 0.452
6 31 0.407 0.294 0.410 0.295 −0.186 0.620
7 17 −0.246 0.293 −0.246 0.293 * *
8 59 −0.035 0.154 −0.031 0.150 0.288 0.313
9 56 0.415 0.181 0.424 0.177 −0.304 0.413
10 31 0.646 0.296 0.645 0.296 −0.012 0.571
11 22 0.591 0.250 0.603 0.216 1.737 0.623
12 39 0.353 0.286 0.342 0.281 −0.313 0.623
13 27 0.181 0.202 0.188 0.187 −0.437 0.362
14 53 −0.269 0.211 −0.296 0.203 0.671 0.365
15 17 0.352 0.655 0.526 0.626 −1.365 1.198
16 42 0.026 0.160 0.033 0.162 −0.216 0.386
17 23 −0.107 0.400 −0.122 0.388 0.896 0.710
18 24 −0.219 0.312 −0.221 0.299 0.543 0.489

and standard errors, obtained from the R function
survreg, are exhibited in Table 1. (Note that in each
of Centres 2 and 7, the Trt*bone values are all 0, so
that in these centres Trt*bonCtr is an affine func-
tion of Trt and β2 is a structural 0.)We then construct
the estimators (3) in these twomodels, scalar forModel
1a and 2-vector for Model 2a: these are the estimators
that would be produced in a meta-analysis, if Model
1a and 2a estimation results (including 2 × 2 estimated
variancematrices for estimates β̃j in 2a) were separately
published from studies at distinct centres. ForModel 1a,
the meta-analytic estimates (3) of β and standard error
are β̂ = 0.176, V̂1/2

∗ = 0.053. For Models 2a, the meta-
analytic coefficient estimates are β̂ = (0.176, 0.191),
with respective SE’s 0.051,0.117. In all of these analyses,
the Trt coefficient β1 is highly significant, indicat-
ing that the experimental treatment prolonged life as
was found by Gray (1994) and DeMissie (2009), but
the separate centres’ models seem to yield conflicting
information.

Models 1a and 2a are fixed effects models for many
small-sample datasets. Fitting them separately in each
centre reflects an assumed lack of connection across
centres j for the coefficients of covariates zij,r not involv-
ing treatment. In Model 1a, the standard errors of the
treatment coefficient are roughly 0.2 in each centre, and
the standardised coefficient ranges across centres from
−1.3 to +3.3, significant (at α = .05, two-sided) in
only 4 centres. InModel 2a, the standardised coefficient
for Trt ranges from −1.5 to +3.2, with 8 significant,
and that for Trt*bonCtr ranges from −1.2 to 2.8,
with only 2 significant. A unified model 1a, assumed
to hold in all centres with common β , yields β̂ =
0.272 with SE=0.069, and the unified model 2a with
shared 2-vector β yields β̂1 = 0.268 with SE=0.068.
However, since the β1 estimates vary considerably
across centre in separately fitted models, the unified

model should accommodate the differences through
a random-effects model like (5b), with independent
random Trt effects across cluster. Random treatment
effects were previously considered both by Gray (1994)
and DeMissie (2009). The unified model (5b), fitted by
SAS proc nlmixed to allow random Trt effects by
centre, results in the following estimates and standard
errors:

Model 1b: β̂ = 0.292, SE(β̂) = 0.102
Model 2b: β̂ = (0.286, 0.306), SE’s = (0.100, 0.145)

The unified models 1b and 2b agree in their estimate
of the Trt coefficient, disagree only slightly from the
unified models 1a and 2a, but the unified analysis dis-
agrees markedly from the meta-analysis. The unified
estimate of the Trt*bonCtr coefficient appears sig-
nificant both in the unified model and in the meta-
analysis. The Trt*bonCtr coefficient can be seen to
be very noisily fitted in the individual clusters, and per-
haps should also be treated with a random effect in the
unified model.

The important point of this example is that a
properly specified combined-sample analysis can be
expected, under the kind of mixed-effect linear model
described here, to give substantially the same results as
ameta-analysis under amodel with adequately detailed
interactions and random effects (Slud & DeMissie,
2011). In this setting, as in most real meta-analyses,
the separate samples (here, the analyses at individ-
ual centres) are too small to identify interactions
such as treatment-by-covariate interactions which are
clearly significant in unified-model analysis. The opera-
tion of meta-analysis, which functionally combines the
separate-sample coefficient estimates, shows through
goodness-of-fit assessments the necessity of including
interaction terms (such as treatment-by-covariate) and
random effects where separate-sample coefficients vary
considerably.

3. Results from large-sample theory

Throughout the rest of this paper, we assume stan-
dard regularity and nondegeneracy conditions about
parameters (β , λj) (as in Bickel & Doksum, 2007,
Theorem 6.2.2, andVan der Vaart, 1998, Theorem 5.39)
which for finite-dimensional λj imply the follow-
ing. First, joint maximum likelihood (ML) estimators
(β̃j, λ̃j) for (β , λj) exist and are consistent and locally
uniquely determined as solutions of the score or likeli-
hood equations in the jth sample, and

√
nj
(

β̃ − β

λ̃j − λj

)
D−→N (0,Wj) as nj → ∞ (6)

The varianceWj is the inverse of the (p + qj) × (p + qj)
Fisher informationmatrix I(j)(β , λj) for the jth sample.
The upper-left p × p block ofWj is denoted byVj(β) or
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by {I(j)(β)}−1, and is the smallest possible asymptotic
variance (in the sense of matrix ordering if p > 1 : K ≤
L if and only if L−K is nonnegative definite) within the
class of all ‘regular’ estimators (Bickel, Klaassen, Ritov,
& Wellner, 1998, pp. 17–21, or Van der Vaart, 1998,
p. 115), which includes (again subject to regularity con-
ditions) all estimators defined as solutions of estimating
equations

nj∑
i=1


j(xij,β , λj) = 0 (7)

where the functions 
j(·) are known and nonrandom
(p + qj)-vector estimating-function summands whose
form depends on study j but not on subject-index i.
Any efficient regular estimator β̃j defined from Xj, i.e.,
one for which the asymptotic variance of

√
nj(β̃j − β)

is no larger than Vj(β), differs from the ML estima-
tor of β by a remainder of order smaller than n−1/2

j
in probability. (This assertion follows from the Hájek-
LeCam convolution theorem, Van der Vaart, 1998,
p. 115.) This notion of efficiency can be extended
also to the case where the nuisance parameters λj are
infinite-dimensional, a notion of ‘first-order optimality’
defined as semiparametric or asymptotic efficiency of
regular estimators (Van der Vaart, 1998, Section 25.3).
Although the information bounds I(j)(β) do depend
on the nuisance parameters λj, we suppress that depen-
dence to keep the notation as simple as possible.

Suppose that the values of an efficient estimator β̃j
and a consistent estimator Ṽj ofVj(β) are reported from
separate analysis of the jth sample in order to obtain
confidence intervals for components or linear combi-
nations of the coordinates of β . The main question
of interest in this paper is: under what circumstances
will there exist a (smooth) function β̂ = g({β̃j, Ṽj}kj=1)

of the summary statistics (β̃j, Ṽj) such that β̂ is effi-
cient ? In the case where the separate-sample estimators
β̃j are assumed efficient, this means that the asymp-
totic variance V∗(β) of

√
n(β̂ − β) is the inverse of the

per-observation Fisher information I∗(β) for β based
on the combined sample of size n = ∑k

j=1 nj. In the
case where the estimators β̃j are obtained from esti-
mating equations as in (4), efficiency means that β̂ has
asymptotic variance no larger than the best combined-
sample estimating equation estimator obtained from a
matrix-weighted linear combination of the estimating
functions

∑nj
i=1 
j(xij,β , λj).

In the next part of this Section, leading up to para-
graphs (I)–(VI), we develop notions of single- and
combined-sample Fisher information about the param-
eter β . Recall that the per-observation Fisher infor-
mation about a parameter θ (here, (β , λj) or (β , λ)

for a vector λ combining all of the free parameters in
(λ1, . . . , λk)) is a matrix expectation defined as

I(θ) ≡ n−1 E(Sθ Strθ ) ≡ n−1 E(S⊗2
θ )

where Sθ is a score statistic obtained as the column
of partial derivatives of the log-likelihood of the data-
sample of size n, with respect to the parameters. (Here
and below, we also use the convenient notation v⊗2 ≡
vvtr for any vector v.) In this section, we express sta-
tistical properties of estimators in terms of the linear
algebra of information matrices.

To begin, we review concepts and develop formulas
related to separate-sample Fisher information about β .
Denote the score statistic for data Xj with respect to
β by Sβ ,j and with respect to λj by Sλj,j. The informa-
tion matrices per observation for the separate-sample
parameters are

I(j)(β , λj) = 1
nj
E

{(
Sβ ,j
Sλj,j

)⊗2
}

=
(
I(j)11 I(j)12
I(j)21 I(j)22

)
(8)

In the block-decomposition on the right-hand side
of (8), I(j)11 is p × p.

The information I(j)(β) about β in the jth sam-
ple is defined as the inverse of the upper-left p × p
block of {I(j)(β , λj)}−1 and is given by I(j)(β) = I(j)11 −
I(j)12 (I(j)22 )

−1 I(j)21 . This linear-algebra fact about inverses
of block-decomposedmatrices can be found in virtually
every book about regression (cf.Draper & Smith, 1981,
Appendix 2A), and can be interpreted as the expression
of the residual variance of Sβ ,j after regression on Sλj,j.
This interpretation is developed in terms of associated
Linear Regression theory by Draper and Smith (1981,
Section 2.6), or more abstractly in terms of projections
by Rao (1973, Sections 4.a.1–2 and 4.a.6).

Since we allow the possibility that some of the coor-
dinates of the parameter vectors λj are shared or con-
strained across different samples Xj, let λ denote a
parameter vector, of dimension d ≤ ∑k

j=1 qj, consisting
of all free parameters among {λj}j, so that all λj vectors
are smooth functionsλj ≡ gj(λ) ofλ. Thenwe canwrite
all of the densities

fj(x,β , λj) = fj(x,β , gj(λ)) ≡ f ∗j (x,β , λ)

where f ∗j is smooth in all components of its parame-
ter arguments. Denote the score statistic for the sam-
ple Xj with respect to the parameter vector λ as Sλ,j.
Then, in terms of the qj × d Jacobian matrix Jgj(λ) =
(∇λgtrj (λ))tr of the qj-vector valued function gj(λ) with
respect to λ,

Sλ,j ≡ ∇λ log fj(Xj,β , gj(λ))

= (Jgj(λ))tr∇λj log fj(Xj,β , λj) = (Jgj(λ))trSλj,j

By independence of the samples Xj, and therefore of
the score-statistics (Sβ ,j, Sλj,j, Sλ,j) for different j, the
per-observation Fisher information for the combined
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parameter (β , λ) in the combined sample is the sym-
metric (p + d) × (p + d) matrix

I∗(β , λ) = 1
n

k∑
j=1

E

{(
Sβ ,j
Sλ,j

)⊗2
}

=
(
I11 I12
I21 I22

)
(9)

where

I11 =
k∑

j=1

nj
n
I(j)11 , I12 =

k∑
j=1

nj
n
I(j)12 Jgj(λ) (10)

The corresponding complete-sample information I∗
(β) is then expressed either as

I∗(β) = I11 − I12 I−1
22 I21 (11)

in case the I22 block is invertible, or more generally via
the regression-residual interpretation analogous to that
of I(j)(β) above, as

I∗(β) = 1
n
inf
K

k∑
j=1

E
[(

Sβ ,j − K Sλ ,j

)⊗2]
(12)

where K in the infimum is an arbitrary p × d matrix,
and inf is understood in the sense of nonnegative-
definite matrix ordering.

We now present a series of propositions relating
combined-sample information and variance to those of
the separate samples.

(I) Kagan and Rao (2003, Lemma 2) establish for
finite-dimensional λj the superadditivity of information

I∗(β) ≥
k∑

j=1

nj
n
I(j)(β) (13)

Since inverse information is equal to the smallest
attainable asymptotic variance for (‘regular’) estimators
under the conditions assumed here, the inequal-
ity (13) can be interpreted to say that the best possi-
ble variance V∗(β) is at most the asymptotic variance
{∑k

j=1(nj/n) [Vj(β)]−1}−1 of the right-hand side of (3).
(II) The last statement can be recast as in Jan-

icki (2009, Theorem6.1.2), to say that additivity of infor-
mation, or equality in (13), holds if and only if β̂ in (3)
has asymptotic variance {I∗(β)}−1. In a setting without
nuisance parameters λj, Janicki (2009, Theorem 6.1.2)
shows for β̃j defined by estimating equations, that an
optimal combined estimator β̂ is obtained either as the
weighted linear combination (3) of estimators, or as
solution to the linear combination of jth-sample esti-
mating equations

k∑
j=1

Aj(β)

nj∑
i=1


j(xij,β) = 0 (14)

where 
j are any estimating functions such that
E(
j(x1j,β)) = 0 and E(−∇β
 tr

j (x1j,β)) is nonsingu-
lar, and the p × pmatrices Aj(β) are defined by

Aj(β) = {−E[∇β 
 tr
j (x1j,β)]}tr

× {E[
j(x1j,β)
j(x1j,β)tr]}−1

In these expressions, functions are evaluated at the same
β governing the data xij.

(III) For an efficient regular combined-sample esti-
mator of the form β̂ = g(β̃1, . . . , β̃k, Ṽ1, . . . , Ṽk)with g
continuously differentiable, Taylor linearisation of g in
terms of its β̃j arguments and their Jacobians Jxj (the
‘Delta Method’) shows that

√
n(β̂ − β)

P≈
k∑

j=1
(n/nj)1/2 Jxj(β , . . . ,β ;V1, . . . ,Vk)

×√
nj (β̂j − β) (15)

i.e., when nj are all of order n, shows that
√
n(β̂ −

β) can be represented as a linear combination of the
normalised centred ML estimators √nj (β̂j − β), up to
a remainder converging to 0 in probability. Since (3)
(with variances V−1

j = V−
j now all assumed to exist) is

shown in Appendix 1 to be the unique optimal matrix-
linear-combination estimator in the sense of minimal
asymptotic variance, up to oP(1) remainders, it follows
that β̂ is equal to the linear combination (3) plus a
remainder of smaller order than

∑k
j=1 n

−1/2
j in prob-

ability.
(IV) There is one more case where the additivity

of information (equality in (13)) is obvious, namely
the case where all I(j)12 are 0. This case is called adap-
tive because, by (11) or (12), the jth sample informa-
tion I(j)(β) = I(j)11 is exactly the same as if λj were
known in advance. But then I11 = ∑k

j=1(nj/n)I(j)(β)

by (10), while (12) with K = 0 implies I∗(β) ≤ I11.
Then equality must hold in (13).

(V) We now come to the main result of this paper,
which says that when the nuisance parameters λj in the
separate samples are distinct and unrelated, then (13)
becomes an equality and an efficient estimator of β of
the form (3) exists. In themulti-sample context described
above, under standard regularity conditions, if all λj ∈
�j vary freely, unconstrained by one another or by β,
so that λ = (λtr1 , λ

tr
2 , . . . , λ

tr
k )tr ∈ �1 × · · · × �k and

d = ∑k
j=1 qj, then equality holds in (13). The restric-

tion to unconstrained nuisance parameters is essen-
tial in this statement, as will be shown by example in
Section 4.

There are a few different proofs of (V) in differ-
ent cases. When the separate-sample estimators β̃ of
the same shared parameter vector β are Maximum
Likelihood estimators in the presence of the nuisance
parameters λj, Lin and Zeng (2010) observe that the

Eric
Sticky Note
move $\mathcal{I}^{\ast}$to next line, so that the expression $\mathcal{I}^{\ast}(\beta)$ is kept together



STATISTICAL THEORY AND RELATED FIELDS 7

maximum profile likelihood estimator for β (i.e., the
maximiser of the log-likelihood partially maximised
over nuisance parameters) in each of the separate stud-
ies and in the combined study is efficient and that
the log profile likelihood for the combined study is
simply the sum of the log profile likelihoods of the
separate studies. Thus the combined-study informa-
tion is the sum of the separate-study informations.
That is the complete proof in the MLE case. Since
any separate-study efficient regular estimators β̃j of
β are asymptotically equivalent in probability to the
corresponding MLEs or profile-likelihood maximisers,
according to the parametric Hájek-LeCam convolu-
tion theorem, this proof establishes the same result
for the combination of any efficient regular separate-
study estimators. Further technicalities would have
been needed to carry this proof idea forward to the case
of freely varying infinite-dimensional nuisance param-
eters λj. Lin and Zeng (2010) did not do that, but our
Appendix 3 does. In another direction of generalisa-
tion, when the separate-sample estimators β̃j estimate
not β but projections 	jβ (with common null-space
0), the profile-likelihood proof sketched above yields
the same result when coupled with the verification
in Appendix 1 that the combined-sample MLE has
I∗(β) = ∑k

j=1 (nj/n)I(j)(β).
(VI) The same result in (V) – the optimality of

estimator (3) – also holds when the separate-study
estimators β̃j, λ̃j are obtained through the solution of
M-estimating equations (4), when the notion of opti-
mality is suitably clarified. Here the estimating func-
tions 
j = ∇β ,λjMj with values in R

p+qj are assumed
to satisfy standard smoothness with respect to param-
eters and other regularity conditions, including that
E(
j(xj1,β , λj)) = 0, where expectations are taken and
the integrand functions evaluated at the same true
parameters β , λj, and where

Cj ≡ E
(

− ∇β ,λj

tr
j (xj1,β , λj)

)tr
,

Bj ≡ E
(

j(xj1,β , λj)
j(xj1,β , λj)tr

)

are nonsingular (p + qj) × (p + qj)matrices. The solu-
tion of (4) is locally unique, in the vicinity of the
true (β , λj), with probability converging to 1 for large
n, by general estimating equation theory (Van der
Vaart, 1998, Chapter 5 or Janicki, 2009, Chapter 2), and
estimators (β̃j, λ̃j) are regular asymptotically linear with
asymptotic distributions

√
nj
(

β̃j − β

λ̃j − λj

)
D→ N (0,Wj), I(j)(β , λj) ≡ W−1

j

where Wj = C−1
j Bj (Ctr

j )−1. Beyond this point, we
maintain the same notations as throughout Section 3,
namely that Vj(β) is the upper-left p × p block of Wj

and

I(j)(β , λj) = W−1
j =

(
I(j)11 I(j)12
I(j)21 I(j)22

)
,

I(j)(β) = (Vj(β))−1 = I(j)11 − I(j)12 (I(j)22 )
−1 I(j)21

although these inverse variance matrices are no longer
Fisher information.

From now on, assume as in paragraph (V) that the
parameters λj range freely and are not constrained by
one another, so that the combined-sample unknown
parameters are (β , λ) = (β , λ1, . . . , λk) ∈ R

p+d. The
first step in extending (V) is to extend the optimality
result in (II) by viewing the separate-study estimating
equations all as estimating equations for the combined
parameters (β , λ). Let


0
j (x,β , λ) = Rj 
j(x,β , λj)

=
(
∇ tr

β Mj(x,β , λj)
∣∣∣ 0trq1

∣∣∣ . . .

∣∣∣ 0trqj−1

∣∣∣
∇ tr

λj
Mj(x,β , λj)

∣∣∣ 0trqj+1

∣∣∣ . . .

∣∣∣ 0trqk
)tr

where Rj is the (p + d) × (p + qj) matrix with the
block decomposition containing 0’s everywhere except
for the identity matrix in the upper-left p × p block
and another qj × qj identity matrix in the submatrix
with consecutive row-indices from p +∑j−1

a=1 qa + 1
through p +∑j

a=1 qa and consecutive column-indices
from p+1 through p + qj.

Now consider the class of all combined-sample esti-
mating equations defined by


(X,β , λ) =
k∑

j=1
Aj(β , λ)

nj∑
i=1


0
j (xji,β , λj) = 0 (16)

where the (p + d) × (p + d)matrices Aj(β , λ) are con-
tinuously differentiable functions of their arguments
and where

C∗ ≡ 1
n
E(−∇β ,λ


tr(X,β , λ))tr

= 1
n

k∑
j=1

nj Aj(β , λ)Rj Cj Rtrj is nonsingular (17)

The same arguments as in standard estimating-
equation theory show that for large n, the solution
of (16) is, with probability approaching 1, locally
unique for (β , λ) in a non-shrinking neighbourhood of
the true values, and defines

√
n-consistent asymptoti-

cally normal estimators (β̂ , λ̂)with asymptotic variance
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(C∗)−1 B∗ (C∗ tr)−1, where

B∗ = 1
n
E
(

(X,β , λ)
(X,β , λ)tr

)

=
k∑

j=1

nj
n
Aj(β , λ)Rj Bj Rtrj Aj(β , λ)tr (18)

Then a slight reworking of the proof of Janicki
(2009, Theorem 6.1.2), using the fact that the gener-
alised inverse of RjBjC−1

j Rtrj is RjCjB−1
j Rtrj , shows that

the combined estimating equation (16) with smallest
asymptotic variance in the sense of positive-definite
ordering of matrices is achieved when Aj(β , λ) =
Rj Cj B−1

j Rtrj , and we fix this choice for Aj(β , λ) in
equations (16)–(18) from now on.

Denote by (β̂ , λ̂) the solution of the estimating
equation (16), which takes the form


(X,β , λ) =
k∑

j=1
Rj Cj B−1

j

nj∑
i=1


j(Xji,β , λj) = 0

(16′)
with equations (17) and (18) giving

B∗ = C∗ =
k∑

j=1

nj
n
Rj Cj B−1

j Ctr
j Rtrj

=
k∑

j=1

nj
n
Rj I(j)(β , λj)Rtrj (19)

Now we return to our objective of comparing the
combined-sample information-analogue I∗(β) for β ,
which is the inverse of the combined-sample asymp-
totic variance for its optimal estimating equation-
estimator β̂ , with the information-analogue from
equation (3). The asymptotic variance matrix for
(β̂ , λ̂) is (C∗)−1, so the combined-sample information-
analogue is I∗(β , λ) ≡ C∗. To find I∗(β) as in equa-
tions (9) and (11), we block-decompose

I∗(β , λ) =
(
I11 I12
I21 I22

)

where the upper-left block I11 is p × p and the lower-
right is d × d.

The upper-left p × p block of C∗ in (19) is obtained
by definition of Rj as the weighted sum of upper-left
blocks of I(j)(β , λj), or I

(j)
11 , that is,

I11 =
k∑

j=1

nj
n
I(j)11

Again by definition ofRj, the p × d block I12 is obtained
from (19) as

I12 =
(n1
n
I(1)12

∣∣∣ n2
n
I(2)12

∣∣∣ . . .

∣∣∣ nk
n
I(k)12

)
while the d × d block I22 is block-diagonal when
decomposed in successive blocks of sizes q1, q2, . . . , qk,

with jth diagonal block given by (nj/n) I
(j)
22 , for j =

1, . . . , k. Therefore,

I∗(β) = I11 − I12I−1
22 I21

=
k∑

j=1

nj
n
I(j)11 −

k∑
j=1

nj
n
I(j)12 (I(j)22 )

−1 I(j)21 (20)

Since the inverse asymptotic variance of β̃j is I(j)(β) =
I(j)11 − I(j)12 (I(j)22 )

−1 I(j)21 , we have proved the desired result,
that the asymptotic variance of the inverse-variance
weighted linear combination (3) is the same as the
asymptotic variance for the estimator derived from
the optimal weighted estimating function (16) in this
section.

Remark on the Proof of (VI). The proof relies on the
M-estimating function property of 
j both in achiev-
ing the specific formula in (17) for C∗ and because that
is the setting where the nuisance-parameter block of
the combined-sample information analogue is block-
diagonal. The application of (VI) is to meta-analyses
where only the structural parameter estimates and their
estimated variances are reported in the separate studies.
However, the fairly dramatic conclusion is that in the
setting of M-estimating functions with unconstrained
λj’s, even if all estimates and variances for nuisance
parameters were also available for combined analysis,
the asymptotic variances of the combined estimates of
structural parameters would be no better.

4. Examples where information additivity fails

It remains to clarify that the asymptotic optimality of
weighted linear combinations of separate-sample esti-
mators in the combined sample cannot persist generally
when the nuisance parameters in the two samples are
coupled, i.e., partially shared or related through com-
mon constraints. The matrix weights in the combined
estimator (3) are optimal in the sense of minimising
variance, and they lead to a combined estimator with
asymptotic information I∗(β). So when the lower
bound on information is not attained at I∗(β) —
and by (13) is smaller with respect to the positive-
definite ordering — linear combinations cannot be
optimal. An example of a coupled parameterisation is
the two-sample location-scale model where λ1 is finite-
dimensional and for a common location parameter β

and a positive unknown scalar σ ,

f1(x,β , λ1) = f0(x − β , λ1),

f2(y,β , λ2) ≡ 1
σ
f0({y − β}/σ , λ1) (21)

Thus in this example, λ2 ≡ (σ , λ1), and we replace
λ1 by λ in the notations below. In the case of finite-
dimensional λ, straightforward calculation shows that
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the per-observation combined-sample Fisher informa-
tion matrix has the form

I∗(β , σ , λ) =
⎛
⎝Iββ Iβσ Iβλ

Iσβ Iσσ Iσλ

Iλβ Iλσ Iλλ

⎞
⎠ (22)

with the expressions for Iσβ = Iβσ , Iβλ = (Iλβ)tr,
Iσλ = (Iλσ )tr given in terms of c = n1/n in Appendix 2.

The goal of this example is to show that generally
the equality in (13) does not hold, by showing that
the reciprocal of the (β ,β) or upper-left element of
{I∗(β , σ , λ)}−1 is not equal to the sum of the recipro-
cals of the upper-left elements of the inverses respec-
tively of

n1
n
I(1)(β , λ)

≡ c

⎛
⎜⎜⎝
(
c + 1 − c

σ 2

)−1
Iββ

(
c + 1 − c

σ

)−1
Iβλ(

c + 1 − c
σ

)−1
Iβλ Iλλ

⎞
⎟⎟⎠
(23)

and of
n2
n
I(2)(β , σ , λ)

≡

⎛
⎜⎜⎜⎜⎝

(
cσ 2

1 − c
+ 1

)−1

Iββ Iβσ

(
cσ

1 − c
+ 1

)−1
Iβλ

Iσβ Iσσ Iσλ(
cσ

1 − c)
+ 1

)−1
Iλβ Iλσ (1 − c)Iλλ

⎞
⎟⎟⎟⎟⎠

(24)

These two displayed information matrices are the
sample-1 and 2 total-information matrices divided by
the total sample-size n.

We supply below a numerical comparison of
the single-sample and combined-sample information
bounds for estimating β . Before doing so, we indicate a
class of densities within this frameworkwhere separate-
sample informations do add to give the combined-
sample information.

Suppose in the location-scale two-sample setting just
described that each density f0(·, λ) is symmetric (i.e.,
an even function) and that its derivative with respect
to λ is also even. Then it is easy to check that f ′0 is odd,
and inspection of the integral formulas in Appendix 2
shows that Iβσ = 0 and Iλβ = 0. In that case, esti-
mation of β is adaptive as in (IV) (just as efficient
without as with knowledge of the nuisance parame-
ters), with separate-sample per-observation informa-
tion numbers for β respectively I(1)(β) = ∫

(f ′0)2/f0
and I(2)(β) = σ−2 ∫ (f ′0)2/f0, and combined-sample
information I∗(β) = (c + ((1 − c)/σ 2)

∫
(f ′0)2/f0. The

t distributions form a special case of this example:

f0(x, λ) = (1 + x2)−λ−1/h(λ),

h(λ) = √
π �(λ + 1/2)/�(λ + 1)

This paragraph shows that within the two-sample
location-scale setting, wemust look within skewed den-
sity classes to find examples where strict inequality
holds in (13).

So we turn to two-sample location family exam-
ples (21) in which f0 is chosen to be asymmetric. One
such density family is the skew-normal due to Azza-
lini (1985)

f0(x, λ) = 2φ(x)�(λx)

In this family, in the special case where the true value
of λ = 0, integration shows that the combined-sample
per-observation information matrix is⎛
⎝ c + (1 − c)/σ 2 0

√
2/π (c + (1 − c)/σ )

0 2(1 − c)/σ 2 0√
2/π (c + (1 − c)/σ ) 0 2/π

⎞
⎠

which is nonsingular if and only if σ �= 1, and in
that case the combined-sample information for β is
c(1 − c)(σ − 1)2/σ 2. However, this example is remark-
able in that the single-sample information matrices
are

c
(

1
√
2/π√

2/π 2/π

)

and
1 − c
σ 2

⎛
⎝ 1 0 2σ/

√
2π

0 2 0
2σ/

√
2π 0 2σ 2/π

⎞
⎠

and are both singular, and the single-sample informa-
tion numbers for β in the presence of nuisance param-
eters tend to 0 as λ decreases to 0.

Non-zero values of the parameter λ further illustrate
the phenomenon of non-additivity of separate-sample
information bounds for estimating the common loca-
tion parameter β when nuisance parameters in the two
samples are related. Table 2 shows several numerically
calculated values (using the function integrate in
R, RDevelopmentCoreTeam, 2017) of separate-sample
and combined information for estimating a location
parameter, all divided by the total sample size n. The
table refers to the skew-normal two-sample location-
scale problem, where λ is the skew-parameter, σ the
scale parameter, and c=0.5 the proportion of observa-
tions in sample 1. The point of these examples is that the
last two rows donot sum to the combined-sample infor-
mation I∗(β), although this is nearly true when σ =
1. In the case previously discussed, with λ = 0, both
of the separate-sample information entries c2−j (1 −
c)j−1 I(j)(β) were 0, while the combined-sample infor-
mation was I∗(β) = c(1 − c)(1 − 1/σ)2.



10 E. SLUD ET AL.

Table 2. Information on β in combined and separate skew-normal samples. In all cases,
c= 0.5.

λ 0.25 0.5 1.0 .05 0.1 0.25 0.5 1.0 2.0

σ 1 1 1 2 2 2 2 2 2

I∗(β) .0382 .1378 .4162 .0638 .0676 .0929 .1718 .3868 .8053
0.5I(1)(β) .0377 .1307 .3572 .0016 .0063 .0377 .1307 .3572 .7345
0.5I(2)(β) .0002 .0034 .0389 .0000 .0000 .0001 .0008 .0097 .0563

Examples like these have practical consequences. In
paragraph (V) above, suppose that γ ≡ (β1, . . . ,βr) ∈
R
r is a subvector of the parameter β , where r < p =

dim(β). Even if additivity of information (i.e., equal-
ity in (13)) holds for two-sample inference about β ,
it does not necessarily hold also for inference about
γ based on the same data. As an example, consider
the same two-sample skew-normal location-scale prob-
lem just presented, but now let the common parameter
of interest be β̄ = (β , λ1), let the sample-1 nuisance
parameter λ̄1 be null (i.e., absent), and replace λ2 by
λ̄2 ≡ σ . Apart from the change in notation, let the
single-sample densities be the same as before. Then the
nuisance-parameter varies separately and freely over
the two samples, and paragraph (V) implies that infor-
mation additivity does hold for β̄ . But we have seen in
the discussion and Table 2 above that inequality (13) is
strict for the sub-vector β .

5. Discussion: meta-analysis and shared
parameters

It is common in statistical applications to model sepa-
rately collected datasets with shared parameters. Meta-
analysis is one approach, within biomedical or social
science, to the pooling of information across separate
centres or data-collections. Parameters like treatment
effects — those that are important for practical deci-
sions — are most often shared across sub-samples,
but common nuisance parameters may also naturally
arise when cross-classifying variables are adjusted away
using models. We have seen in this paper that there is
no obstacle to the efficient weighted linear combination
of separate-sample ML orM-estimators when nuisance
parameters are either absent or vary freely without con-
straints across samples, but that otherwise, efficient
functional combination may be impossible. The clear
message for statistical practice is that whenever possi-
ble, separate studies which might be combined should
report the estimator along with the estimated vari-
ance of a parameter vector which includes both β and
whichever components of λj might be shared across the
models for separate samples.
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Appendices

Appendix 1. Optimality of the linear
combination in equation (3)

We are interested in regular estimators of β ∈ R
p based

on separate-sample efficient estimators β̃j of the projected
parameters 	jβ , where 	j are projections onto known sub-
spaces of R

p. The most important and well-studied case is
where the same parameter is estimated in all samples, and
	j = I, but it turns out to be almost as easy to consider
the general case where {	j β}kj=1 determines β , or equiva-
lently, where∩k

j=1null(	j) = ∅. If range (	j) is of dimension
less than p, then the projection 	jβ is understood as hav-
ing ‘structural zeroes’ in place of the parameter components
(I − 	j)β , such as would occur if the β entries were regres-
sion coefficients for the (independent, randomly generated)
rows of a nj × p design matrix Dj, and if in the jth sam-
ple the rows of Dj were structurally constrained to be in the
range space of	j, so thatDj(I − 	j) = 0 is almost surely the
zero matrix. Further assume (without loss of generality) that
the estimators β̃j are constrained to fall in the range space
of 	j, so that (I − 	j)β̃j = 0, and that the asymptotic vari-
ancematrixVj(β) of√nj(β̃j − 	jβ) exists and is consistently
estimated by Ṽj. Without loss of generality (I − 	j)Vj(β) =
(I − 	j)Ṽj = 0, and Vj(β) is an invertible linear operator
from range(	j) to itself, with inverse which we denote by IV

j .
Then V−

j ≡ IV
j ◦ 	j is a generalised inverse of Vj = Vj(β)

(Rao, 1973, p. 24), which means that

Vj(β)V−
j Vj(β) = Vj(β) and V−

j Vj(β)V−
j = V−

j

More specifically, we have by definition of V−
j ,

Vj(β)V−
j = V−

j Vj(β) = 	j (A1)

Similar notations Ṽ−
j and generalised-inverse properties also

hold for the estimated variance matrices Ṽj. The projection
operators	j need not all have the same range, but we assume
that they have no common nontrivial null-space.

We restrict to estimators of the linear form
∑k

j=1 Aj β̃j,
as in paragraph (III) of Section 3, where Aj are p × p
matrices that depend continuously on β̃j and the variance-
estimators Ṽj, and there is no loss of generality in imposing
the structural-zero constraint Aj = Aj 	j. It follows from
regularity that for large n, the matrices Aj must satisfy the
constraint

k∑
j=1

Aj − I P→ 0 (A2)

where I denotes the p × p identity matrix. This holds
because regularity (Bickel et al., 1998, pp. 17–21, or Van der
Vaart, 1998, p. 115) of estimators β̃j and of

∑k
j=1 Aj β̃j implies

that √nj (β̃j − 	jβ) and

√
n
( k∑

j=1
Ajβ̃j − β

)
=

k∑
j=1

( n
nj

)1/2
Aj
√
nj (β̃j − 	jβ)

+ √
n

⎛
⎝ k∑

j=1
Aj − I

⎞
⎠β

each converge in distribution to the same respective lim-
its whenever β is replaced by any element β + c/

√
n in a

neighbourhood of extent O(1/
√
n) about β .

We now prove that among estimators
∑k

j=1 Aj β̃j satis-
fying (A2) and Aj = Aj	j, the smallest asymptotic variance
matrix with respect to positive-definite ordering is attained
only when Aj is asymptotically equivalent to (differs by oP(1)
from)

Ao
j ≡

{ k∑
l=1

nl V−
l

}−1

nj V−
j (A3)

If A∗
j denotes the large-sample in-probability limit of Aj,

for j = 1, . . . , k, then A∗
j = A∗

j 	j and the constraint (A2)
immediately implies that

∑k
j=1 A

∗
j 	j = I. Then the asymp-

totic variance matrix of the estimator n1/2(
∑k

j=1 Aj β̃j − β)

is, by independence of the samples Xj, the limit of

n
k∑

j=1
A∗
j {Vj(β)/nj}A∗ tr

j = n
k∑

j=1
Ao
j {Vj(β)/nj}Ao tr

j

+ n
k∑

j=1
(A∗

j − Ao
j ) {Vj(β)/nj} (A∗

j − Ao
j )

tr (A4)

The equality in (A4) follows immediately from the constraint∑
j A

∗
j 	j = I, noting by (A1) and (A3) that

k∑
j=1

Ao
j (Vj(β)/nj)A∗ tr

j =
[ k∑

l=1

nl V−
l

]−1 k∑
j=1

	j A∗ tr
j

=
[ k∑

l=1

nl V−
l

]−1

which is equal to
∑k

j=1 A
o
j (Vj(β)/nj)Ao tr

j . The unique
variance-minimising property of A∗

j = Ao
j follows from the

fact that the last matrix on line (A4) is nonnegative definite

http://www.R-project.org
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and is 0 only when all A∗
j = Ao

j . The desired result has been
proved.

Appendix 2. Informationmatrices in Section 4

Section 4 presents a two-sample location-scale problem with
respective densities

f1(x,β , λ) = f0(x − β , λ),

f2(y,β , σ , λ) ≡ 1
σ
f0({y − β}/σ , λ)

andwith sample sizes n1 and n2 = n − n1 with c ≡ n1/n. The
combined-sample informationmatrix (22) for the parameters
(β , σ , λ) is given as

c E({∇β ,σ ,λ log f1(x11,β , λ)}⊗2)

+ (1 − c) E({∇β ,σ ,λ log f2(x12,β , σ , λ)}⊗2)

≡c

⎛
⎝{I(1)(β , λ)}11 0 {I(1)(β , λ)}12

0 0 0
{I(1)(β , λ)}12 0 {I(1)(β , λ)}22

⎞
⎠

+ (1 − c) I(2)(β , λ)

since ∇σ log f1(x11,β , λ) is 0. Then straightforward integra-
tion yields the entries of I(1)(β , λ) = E({∇β ,λ log f1(x11,β ,
λ)}⊗2) as

I(1)11 =
∫

(f ′0)2

f0
dx, I(1)12 = −

∫
f ′0
f0

(∇λ f0) dx,

I(1)22 =
∫

(∇λ f0)2

f0
dx

where f ′0, f
′′
0 denote derivatives of f0(x, λ) with respect to the

first argument x, and all functions f0 and derivatives are eval-
uated at (x, λ) and integrated with respect to the x variable on
(−∞,∞).

Similarly one calculates directly the entries of the sym-
metric 3 × 3 matrix I(2)(β , λ) = E({∇β ,σ ,λ log f2(x12,β , σ ,
λ)}⊗2) as

I(2)11 = 1
σ 2 I

(1)
11 , I(2)12 =

∫
x(f ′0)2

σ 2 f0
, I(2)13 = 1

σ
I(1)12

I(2)22 = 1
σ 2

(∫
x2(f ′0)2

f0
dx − 1

)
,

I(2)23 = −
∫

(∇λ f0)
xf ′0
σ f0

dx, I(2)33 = I(1)22

From these integral expressions we derive the entries of (22)
as

Iββ =
(
c + 1 − c

σ 2

)
I(1)11 , Iβσ = (1 − c) I(2)12 ,

Iσσ = (1 − c) I(2)22 ,

Iλλ = I(1)22 , Iβλ =
(
c + 1 − c

σ

)
I(1)12 , Iσλ = (1 − c) I(2)23

along with the separate-sample information expressions (23)
and (24).

Appendix 3. Infinite Dimensional Nuisance
Parameters

This Appendix provides an extension to infinite-dimensional
nuisance parameters, of the result of paragraph (V) of
Section 3 on the efficient functional combination of separate-
sample MLEs to provide an efficient combined-sample esti-
mator of a structural (finite-dimensional) parameterβ shared
across samples. The result states that such an efficient combi-
nation exists when the separate-sample nuisance parameters
vary freely and independently of one another.

We maintain the notation of Section 3. The nuisance-
parameter spaces �j may now be infinite-dimensional, qj ≤
∞. Assume that for all qj dimensional vectors λj ∈ �j and
any qj dimensional vectorswj with atmost finitelymany com-
ponents nonzero, there exist tj > 0 such that λj + tj wj ∈ �j.
We also assume standard regularity and nondegeneracy con-
ditions about finite-dimensional submodels with parameters
(β , λj) (as in Bickel &Doksum, 2007, Theorem 6.2.2, andVan
der Vaart, 1998, Theorem 5.39). In particular, for each finite-
dimensional affine subsetMj ⊂ �j, (a set of the form {u + v :
v ∈ Vj} where Vj is a vector space) and (β , λj) ∈ U × Mj,
these assumed conditions imply that the joint ML estimators

(β̂j, λ̂j) ≡ argmax

{ nj∑
i=1

log fj(xij,β , λj) : (β , λj) ∈ U × Mj

}

for (β , λj) exist and are consistent and locally uniquely deter-
mined as solutions of the score or likelihood equations in the
jth sample, and are asymptotically normal in the following
sense. Let λj ∈ Mj and

Mo
j ≡

{
vj − λj : vj ∈ Mj

}
This is a vector space whose dimension dj ≥ 1 we have
assumed to be finite. Let (a(j)

l : l = 1, . . . , dj) denote an
orthonormal basis ofMj, and define the operatorHj : Mo

j �→
R
dj by the rule

Hj

⎛
⎝ dj∑

l=1

cl a
(j)
l

⎞
⎠ ≡ (c1, . . . , cdj) ∈ R

dj

Then Hj is a vector space isomorphism, and

√
nj
(

β̂j − β

Hj(λ̂j − λj)

)
D−→ N (0,�j) as nj → ∞ (C1)

The variance �j is the inverse of the (p + dj) × (p + dj)
Fisher Information matrix I(j)(β , λj;Mj) for the jth sample
and depends on the finite-dimensional parameter space Mj
(the submodel). The upper-left p × p block of�j is denoted by
{I(j)(β ;Mj)}−1. The infimum in the sense of positive-definite
matrix ordering (K ≤ L if and only if L−K is nonnegative
definite)

I(j)(β) ≡ inf
{
I(j)(β ;Mj) : Mj finite-dimensional ⊂ �j

}
can be shown to exist (Bickel et al., 1998, pp. 17-21, or Van
der Vaart, 1998, p. 115).

As discussed in Section 3, another expression for
I(j)(β ;Mj) is

I(j)(β ;Mj) = 1
nj

inf
v,K

E

{ nj∑
i=1

(
∇β log fj(xij,β , λj)

−K
d
dt

log fj(xij,β , λj + tv)
∣∣∣
t=0

)⊗2
}
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where v ranges over all vectors in the dj dimensional space
Mo

j , the p × dj matrix K is arbitrary, and we adopt the nota-
tion w⊗2 = wwtr for any vector w, and denote by ∇β the
gradient operator. The inf in the displayed expression is
actually achieved, and leads to the expression

I(j)(β) = 1
nj

min
w,K

E

{ nj∑
i=1

(
∇β log fj(xij,β , λj)

−K
d
dt

log fj(xij,β , λj + tw)

∣∣∣
t=0

)⊗2
}

where w now ranges over all (sufficiently small) vectors in
{u − λj : u ∈ �j} differing from 0 in only m coordinates, for
some finitem, and K ranges over all p × m real matrices.

Any efficient regular estimator β̃j defined from Xj, i.e.,
one for which the asymptotic variance of

√
nj(β̃j − β) is no

larger than {Ij(β)}−1, differs from any other such estimator
by a remainder of order smaller than n−1/2

j in probability
(Hájek-LeCam convolution theorem, Van der Vaart, 1998,
p. 115). This notion of semiparametric efficiency applies
under general conditions to the case discussed here where
the nuisance parameters λj are infinite-dimensional. Semi-
parametric efficient regular estimators are discussed in Van
der Vaart (1998, Section 25.3). Although the information
bounds I(j)(β) depend on the nuisance parameters λj, we
suppress that dependence to keep the notation as simple
as possible.

We next define the notion of combined-sample Fisher
information about β , based on all data (Xj, j = 1, . . . , k).
Allowing the possibility that some of the coordinates of the
parameter vectors λj are shared or constrained across dif-
ferent samples Xj, let λ denote a maximal parameter vector
consisting of all free parameters among {λj}j, so that allλj vec-
tors are well-behaved functions of λ. Then all of the densities
can be written fj(x,β , λj) ≡ f ∗j (x,β , λ), where f ∗j is smooth
in all components of its parameter arguments. By indepen-
dence of the samples Xj, and by analogy with the displayed
formula above for the separate-sample per-observation
Fisher information matrices I(j)(β), there now exists a
variationally defined combined-sample information matrix
for β ,

I∗(β) = 1
n
inf
v,K

k∑
j=1

nj∑
i=1

E
({

∇β log f ∗j (xij,β , λ)

− K
d
dt

log f ∗j (xij,β , λ + tv)
∣∣∣
t=0

}⊗2)
(C2)

where for some finitem ≥ 1, the vector v ranges over all sub-
vectors of dimension the same as λ which differ from 0 in at
mostm places; K ranges over all p × m real matrices; and the
inf is in the sense of nonnegative-definitematrix ordering. By
these variational considerations, the inequality (13) on super-
additivity of information, presented in (I) of Section 3 in the
finite-dimensional setting, continues to hold in the setting
allowing infinite-dimensional λj.

We now come to the main result of this Appendix, that
when the nuisance parameters λj in the separate samples
are unrelated, then (13) becomes an equality. The proof
arguments are in the spirit of Bickel et al. (1998), Van der
Vaart (1998, Chapter 25), and Tsiatis (2006). It is a gen-
eral phenomenon that independent samples with freely vary-
ing nuisance parameters allow combined optimal estimators
by simple linear combination of separate-sample optimal
estimators.

Proposition A.1: Under the setting and assumptions above,
suppose also that the possibly infinite-dimensional nuisance
parameters λj ∈ �j vary freely, unconstrained by β or by each
other. Assume further that as the sample-size n increases, all
of the ratios nj/n have limits cj ≥ 0. Then the combined-
sample semiparametric per-observation information bound is
I∗(β) = ∑k

j=1 cjI(j)(β).

Proof: We define several Hilbert subspaces of the space
L2p(�, σ({Xj}kj=1),P) of p-vector square-integrable random
variables defined measurably from the combined samples
Xj, where P is the probability measure corresponding to
the true parameter values β , {λj}kj=1. First, for j = 1, . . . , k,
define the closed linear spaces Hj of (assumed square-
integrable) random p-vectors with coordinates spanned by
directional derivatives (d/dt) log fj(xij,β + tb, λj + tv) eval-
uated at t= 0, where b ∈ R

p and v is any vector with at most
finitely many entries nonzero such that λj + tv ∈ �j for all
sufficiently small t. Denote by H the span of all the spaces
Hj, j = 1, . . . , k. DefineLj ⊂ Hj to be the closed linear span
of the subset of these vectors of directional derivatives for
which b = 0, and

B =
{
A∇β log fj(xij,β , λj) : p × pmatrices A,

1 ≤ j ≤ k, 1 ≤ i ≤ nj
}

Inner products on the spaces Hj of p-vectors are: 〈ξ , η〉 =
E(ξ trη). Since all elements of H have mean 0, the inner
product is the sum of componentwise covariances.

Let 	{· |M} denote the linear projection within H onto
the closed linear space M. The separate-sample informa-
tion bounds I(j)(β) can generally (Bickel et al., 1998; Tsi-
atis, 2006; Van der Vaart, 1998) be interpreted as the vari-
ances of the ‘efficient influence functions’, the projection of
the respective p-vector scores ∇β log fj(xij,β , λj) onto the
orthogonal complement of Lj within Hj, denoted L⊥

j , or
(equivalently, because each sample is independent identically
distributed)

I(j)(β) = n−1
j E

(
	

{
∇β

nj∑
i=1

log fj(xij,β , λj)
∣∣∣∣L⊥

j

})⊗2

= n−1
j E

(
∇β

nj∑
i=1

log fj(xij,β , λj)

−	

{
∇β

nj∑
i=1

log fj(xij,β , λj)
∣∣∣∣Lj

})⊗2

The Hilbert space H is called the tangent space of the finite-
dimensional submodels. Because of the assumption that all of
the parameters λj vary freely and unconstrained, H can be
expressed as the direct sum

H = B ⊕ L1 ⊕ L2 ⊕ · · · ⊕ Lk

Since the subspacesLj aremutually orthogonal, being formed
from independent randomvariables for different j = 1, . . . , k,
for each i = 1, . . . , nj,

	{∇β log fj(xij,β , λj) |L⊥
j } =

	{∇β log fj(xij,β , λj)|(L1 ⊕ L2 ⊕ · · · ⊕ Lk)
⊥}
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It follows immediately that the projection of
∑k

j=1
∑nj

i=1 ∇β

log fj(xij,β , λj) in H orthogonal to L1 ⊕ · · · ⊕ Lk, which is
the efficient influence function for the combined-sample data
problem, is also precisely the same as

k∑
j=1

	

{ nj∑
i=1

∇β log f1(xij,β , λ1) |L⊥
j

}

The norm-squared or variance of this projection is, bymutual
independence of Xj, equal to a sum of variance-covariance

matrices of projections:
k∑

j=1
E

⎛
⎝	

{ nj∑
i=1

∇β log fj(xij,β , λj) |L⊥
j

}⊗2⎞⎠

=
k∑

j=1
nj I(j)(β)

Thus I∗(β) is asymptotically equal to
∑k

j=1 cj I(j)(β), com-
pleting the proof. �
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